Influência do fluxo e refluxo do aquífero na evolução do processo erosivo na margem do rio São Francisco

Arilmara Abade Bandeira¹; Francisco Sandro Rodrigues Holanda¹; Ana Patricia Casado Barreto¹; Renisson Neponuceno de Araújo Filho¹

Resumo: A implantação de grandes projetos hidrelétricos na Bacia Hidrográfica do Rio São Francisco tem provocado modificações no comportamento de descarga e transporte da carga sólida do rio gerando impactos ambientais. O objetivo deste estudo foi verificar a interação das águas superficiais e subterrâneas na interface dos taludes marginais e analisar sua influência no processo erosivo. Foram utilizados Indicadores de Nível D'água – INAs, que são instrumentos que permitem a observação da profundidade do lençol freático, e verificou-se que as variações das taxas de erosão no período de estudo ocorreram em função, também, do sentido do fluxo hidráulico. O fluxo hidráulico é um dos mecanismos mais atuantes do processo erosivo uma vez que quando a vazão diminui, o gradiente de energia inverte o seu sentido e as águas subterrâneas movem-se em direção ao canal do rio, o que provoca a movimentação de partículas com maior intensidade ao longo das linhas de fluxo que se dirigem para a base do talude. Observou-se que o volume de água liberado permaneceu dentro da mesma faixa de valores que os demais períodos, demonstrando que foi muito pequena a variação de vazão na calha do rio no baixo São Francisco, em função da quantidade de água liberada pela Usina Hidrelétrica Xingó. O rebaixamento do nível de água no Baixo São Francisco contribui bastante para instabilidade dos taludes e aceleração do processo erosivo. Uma das principais causas da instabilização dos taludes é a direção do fluxo do lençol freático, aliado ao choque das ondas na base do barranco.

Palavras chave: erosão marginal, fluxo hidráulico, bacia hidrográfica.

Influence of the ebb and flow of the aquifer in the evolution of erosion on the right bank of the Lower São Francisco river

Abstract: The construction of big electrical power dams in the São Francisco river basin have led to changes in its hydrological system. It has altered its discharge and sediment transport behavior, generating environmental impacts. The accelerated bank erosion, considered one of the most harmful, leads to the channel sedimentation. This research was conducted in order to study the subterranean water flux to the river banks. Water Level Indicators - WLI were installed in order to observe the water table behavior. Besides other causes, erosion variation among sites was related to the hydraulic flux, from the land toward the river. When the water level decreases subterranean waters move in direction to the river channel, promoting the intense movement of soil particles in the hydraulic flux that go to the river basin. It was observed that from February 1999 to January 2000 the volume of water released remained constant, demonstrating that the variation is very small in flow in the Lower course of the River São Francisco, in accordance with the amount of water released by Hydroelectric Xingó. The lowering of the water in the Lower San Francisco contributes significantly to the instability of slopes and accelerated erosion. One of the major causes of instability of slopes is the direction of groundwater flow coupled with shock waves at the base of the ravine.

Key words: bank erosion, hydraulic flux, river basin

Introdução

A erosão marginal é uma das manifestações de degradação ambiental resultante das intervenções realizadas na bacia hidrográfica do rio São Francisco, tendo sido fortemente potencializada pela mudança do regime hídrico do rio São Francisco com efeitos na

redução da disponibilidade hídrica, para o seu baixo curso, se refletindo em alteração da vazão, poluição das fontes de abastecimento existentes e mudança no nível do lençol freático (Holanda et al., 2005). O processo de erosão marginal está intimamente relacionado com a composição do solo da margem do rio e correspondentes propriedades mecânicas. O

¹ Universidade Federal de Sergipe, Av. Marechal Rondon, s/n Jardim Rosa Elze, São Cristóvão, Sergipe, Brasil, CEP 49100-000. E-mail: arilmara@ig.com; fholanda@infonet.com.br; apb_casado@hotmail.com; nepoaraujo@hotmail.com.

material do talude pode ser coesivo ou não coesivo e pode compreender várias camadas de solo. A estabilidade do talude do rio depende de inúmeras variáveis de controle, como as propriedades do solo como estrutura (Van Klaveren e Mccool, 1998), as condições de umidade do solo (Simon et al., 2000), e complexas forças eletroquímicas entre as partículas coesas, o fluxo e a vegetação (Pizzuto et al, 2010;. Wynn e Mostaghimi, 2006).

Uma das principais causas da erosão das margens do Baixo São Francisco é o fluxo e refluxo entre o aquífero e a calha do rio durante a oscilação horária dos níveis d'água, determinada pelo volume de água liberado pela Usina Hidrelétrica de Xingó, que varia de acordo com a demanda para consumo de energia (Holanda et al., 2009). Durante o rápido rebaixamento do nível de água de um rio, se produz um grande fluxo subterrâneo na base do talude, retirando materiais finos, tornando os taludes marginais mais suscetíveis deslizamentos а frequentes e ao desmoronamento de suas partes superiores (Casado et al., 2002). A variação do nível das águas no rio tende a produzir fluxos e refluxos. No estágio de subida de nível das águas, desenvolvese um gradiente hidráulico no sentido do canal fluvial para a margem do rio, e no estágio de descida, o gradiente de energia inverte o seu sentido e a água move-se em direção ao canal do rio, diminuindo a estabilidade do talude marginal.

O movimento da água subterrânea em direção ao rio pode gerar surgências ("seepage") ou pontos de afloramento da água subterrânea, que é um fator que afeta a estabilidade do talude e que não é considerado por métodos tradicionais de análise de estabilidade de taludes que não levam em consideração as forças provocadas pelas surgências (Chiew, et al., 2010). Pode ser também acompanhado do transporte de partículas finas (conhecida como erosão subterrânea ou "piping") (Holanda et al., 2007). Piping é uma forma subsuperficial de erosão que envolve a remoção da subsuperfície do solo formando canais de erosão para saída livre de água. Com a erosão na base do talude ocorre a remoção contínua de solo promovendo uma mudança na inclinação do talude com um aprofundamento e alteração do ângulo de inclinação (Bertrand, 2010).

A velocidade e a força de percolação correspondente são muito maiores na base do que na parte superior do talude. A força de percolação tenderá a provocar a movimentação de partículas de solo com maior intensidade ao longo das linhas de fluxo que se dirigem para a base do talude, atingindo mais facilmente uma situação de desequilíbrio, por arraste de partículas, do que nas partes superiores. Uma vez que a base do talude tenha entrado em

colapso, a parte superior cederá por perda de apoio (Guidicini e Nieble, 1983). A tendência de arraste das partículas é muito maior em solos com baixa coesão.

A instabilidade dos taludes pode estar associada à excessiva carga de água ou excessiva pressão da água (Maciel Filho, 1997). O registro sistemático dos níveis da água, a altura atingida pela água na seção em relação a uma certa referência, constitui a base dos estudos fluviométricos, devido à facilidade com que podem ser efetuadas as observações.

O objetivo deste estudo foi verificar a interação das águas superficiais e subterrâneas na interface dos taludes marginais e analisar sua influência no processo erosivo.

Material e Métodos

A área estudada está inserida no baixo curso do rio São Francisco, que divide os estados de Sergipe e Alagoas, no trecho compreendido entre o município sergipano de Propriá e a foz do rio. O monitoramento da erosão vem sendo realizado desde o ano de 1998, no Perímetro Irrigado Cotinguiba -Pindoba, delimitado pela longitude 36° 44' 01" Oest e e latitude 10° 15' 37" Sul. O clima na região é megatérmico semiárido brando, com temperatura média anual de 26°C e o período chuvoso compreende os meses de março a agosto, com precipitação média anual de 806,1mm/ano (Conejo, 2003). O solo do sítio experimental tem granulometria composta em mais de 90% por areia média, fina e muito fina, sendo classificado como Neossolo Flúvico, conforme Holanda et al. (2010). Esses autores caracterizam este tipo de solo como de muito baixa coesão, baixa resistência ao cisalhamento e alto ângulo de atrito (de 17 a 25º), e o talude com Fator de Segurança (FS) menor que 1,0, sendo então classificado como Instável.

Para compreensão da dinâmica da superfície freática foi realizado o registro periódico das alturas do nível freático em quatro seções monitoradas na margem do rio São Francisco, seções, A, B, C e D, com o objetivo de determinar suas profundidades. Com base nestes registros periódicos foi possível obter a curva do nível freático, a linha piezométrica e as profundidades em relação à superfície do solo ao nível do rio e ao longo das seções estudadas.

Foram instalados piquetes no rio e Indicadores de Nível de Água (INA) nos taludes, abertos com trado manual tipo cunha, na forma de tubos de PVC de 50 mm de diâmetro, fendilhados com serra. O INA foi utilizado com a finalidade de observar a profundidade na qual se encontra o nível de água

subterrânea e verificar a oscilação do mesmo em relação ao nível de água do rio na interface com os taludes. Foram instalados dois INAs na seção A e um INA na seção C e mais dois INAs na seção D.

O monitoramento das seções consistiu em duas ou três leituras diárias dos níveis de água do rio e dos níveis de água subterrânea nos INAs. As leituras dos níveis de água foram realizadas nos períodos de janeiro a fevereiro de 2002, de abril de 2004 a junho de 2004 e de setembro de 2004 a fevereiro de 2005.

Em todos os INAs a perfuração foi realizada até o nível em que se encontrava o lençol freático. Os INAs foram instalados de maneira que os tubos ficaram com a extremidade superior no mesmo nível ou acima da superfície do solo e a extremidade inferior abaixo do nível de água do solo. As leituras dos níveis da água do rio foram realizadas diariamente com trena comum a partir do topo do piquete, nos períodos mencionados anteriormente. As leituras dos níveis freáticos foram realizadas utilizando-se uma trena graduada com sonorizador na sua extremidade introduzido no interior do tubo, que em contato com o nível de água emite um som característico. Nos procedimentos de medida do nível de água, as leituras são relacionadas à cota da boca do tubo, pois, assim, se obtêm também a cota do nível de água dentro da perfuração, isto é, a cota do nível freático.

Com o conhecimento de profundidade do lençol freático e da sua elevação com relação à elevação do nível de água do rio, foi possibilitada a determinação do fluxo de água subterrânea e o estabelecimento da correlação entre o nível de água do rio e o nível de água subterrânea nas seções dos taludes estudados, relacionando com as vazões no rio, ocorrentes nos dias de coleta de dados.

Os resultados foram interpretados a partir de uma representação analítica funcional. As curvas de regressão linear foram obtidas relacionando-se as distâncias dos INAs em relação a margem do rio, com as cotas dos níveis d'água do rio na base do talude e as cotas do lençol freático, permitindo a determinação do sentido do fluxo hidráulico na interface dos taludes, bem como a posição do lençol freático em relação à margem do rio.

Resultados e Discussão

Para determinação da direção do fluxo hidráulico nas seções monitoradas, perfilaram-se todos os registros dos níveis de água do rio e do solo, de uma mesma seção, em um gráfico em função de sua distância à margem do rio. No eixo vertical, são apresentados os valores dos níveis de água do rio e

dos níveis de água do aquífero (NA). No eixo horizontal, são apresentadas suas respectivas distâncias da margem do rio. Foi então possível definir o sentido de fluxo na interface dos taludes, e a posição do lençol freático em função da distância da margem do rio.

Na Figura 1 são apresentadas as cotas dos níveis de água no canal do rio e do talude para Seção A. A primeira concentração de pontos à esquerda refere-se às cotas do nível de água do rio na base do talude. A segunda concentração de pontos corresponde às cotas do nível de água no talude, a uma distância de 20,54 m da margem de rio. A terceira concentração de pontos diz respeito às cotas do nível de água no talude, a uma distância de 48,34 m da margem do rio.

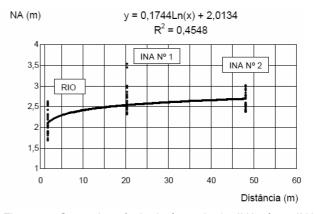


Figura 1 - Cotas dos níveis da água do rio, INA nº 1 e INA nº 2, como referência para a indicação da direção de fluxo de água subterrânea na Seção A, no período de janeiro de 2002 a fevereiro de 2002.

A equação (y=01744x + 2,0134) explica a relação entre o nível de água no canal do rio e a distância para o talude. O nível de água do rio se eleva na razão de 0,1744 m/m, na medida em que se afasta do talude. A expressão também aponta o sentido de fluxo hidráulico na direção do talude para o canal do rio. A inflexão da curva para a esquerda indica que o sentido do fluxo hidráulico ocorreu, na direção do talude para o canal do rio, ou seja, na direção do INA nº 2 para o INA nº 1.

Semelhante à Seção A, o fluxo de água subterrânea verificado para a Seção B, no período monitorado ocorreu na direção do talude para o canal do rio conforme se observa na Figura 2. A curva obtida pela plotagem das cotas dos níveis de água do rio e do solo apresenta uma inflexão da direita para a esquerda, ou seja, no sentido da margem para o canal do rio.

Na Figura 2 a primeira concentração de pontos à esquerda corresponde às cotas do rio, a segunda

concentração corresponde às flutuações do nível de água do lençol freático na distância de 9,27 m da margem do rio (INA nº 3) e a terceira concentração diz respeito às variações do nível de água no solo, na distância de 37,47 m (INA nº 4).

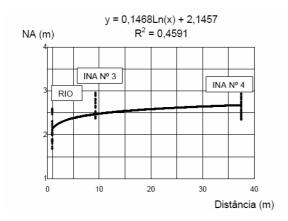


Figura 2 - Cotas dos níveis da água do rio, INA n º 3 e nº 4, como referência para a indicação da direção de fluxo de água subterrânea na Seção B no período de janeiro de 2002 a fevereiro de 2002.

Da mesma forma que na Seção A, na Seção B, quando o nível d'água do rio diminui, o fluxo hidráulico inverte seu sentido e move-se em direção ao rio, intensificando a pressão de percolação em direção ao canal fluvial, provocando a movimentação de partículas de solo em direção à base do talude, criando uma situação de instabilidade.

Durante o período de monitoramento do INA No. 5, o fluxo hidráulico na seção C, representado na Figura 3, e o lençol freático na seção C se apresentam estacionários, ou seja, fluxo seria mais lento em direção ao rio.

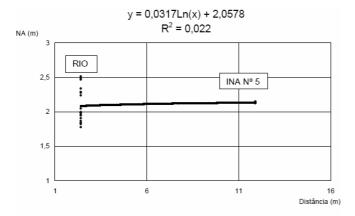


Figura 3 - Cotas dos níveis de água do rio, INA nº 5, como referência para a indicação da direção de fluxo de água subterrânea na Seção C, no período de janeiro de 2002 a fevereiro de 2002.

Na Seção C, a primeira concentração de pontos refere-se às cotas do nível da margem do rio e a segunda concentração de pontos refere-se às cotas do nível de água do solo a uma distância de 40,74 m da margem do rio.

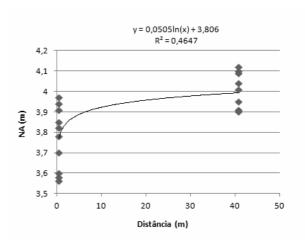


Figura 4 - Cotas dos níveis de água do rio e do INA nº 3, como referência para indicação da direção do fluxo da água subterrânea na Seção C.

Na Figura 4, a inflexão da curva para a esquerda orienta que o sentido do fluxo hidráulico ocorreu, do talude para o canal do rio indicando pela equação y = 0,0505 ln (x) + 3,806 que o nível do lençol freático se eleva na razão de 0,0505 m/m na medida em que se afasta da margem.

Da mesma forma que nas Seções A e B, na Seção C, quando a vazão aumenta, desenvolve-se um gradiente no sentido do canal para o talude do rio. Quando a vazão diminui, o gradiente de energia inverte o seu sentido e o fluxo move-se em direção ao canal do rio, provocando a movimentação de partículas de solo com maior intensidade ao longo das linhas de fluxo, que se dirigem para a base do talude, se apresentando evidente uma situação de desequilíbrio na base do talude. Esta situação facilita a ação dos ventos e das ondas, contribuindo para o solapamento da base e retomada da erosão marginal.

Na Seção D (Figura 5), a primeira concentração de pontos à esquerda refere-se às cotas do nível de água no canal do rio. A segunda concentração de pontos refere-se às cotas do nível de água do talude a uma distância de 30,57 m da margem do rio e a terceira concentração de pontos refere-se às cotas do nível de água do talude a uma distância de 94,86 m da margem do rio.

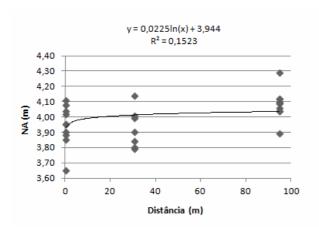


Figura 5 - Cotas dos níveis de água do rio, INA nº 4 e INA nº 5, como referência para indicação da direção do fluxo da água subterrânea na Seção D.

O fluxo hidráulico e a direção do fluxo na seção D não se mostram evidentes, explicado pelo baixo valor 0,0225 e pelo coeficiente $R^2 = 0,1523$.

A regularização da vazão no baixo curso do rio São Francisco, devido à construção de barramentos ao longo do seu curso, teve como conseqüência imediata a diminuição do nível d'água do rio, contribuindo diretamente para o rebaixamento do lençol freático, que antes era recarregado pelas águas do rio e dava-se no sentido do canal do rio para a margem. A Figura 6 apresenta a variação das vazões médias na área de estudo, no período de fevereiro de 1999 a janeiro de 2000, e no período de fevereiro de 2004 a janeiro de 2005.

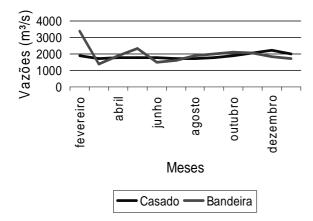


Figura 6 - Vazões médias correspondentes ao período de fevereiro de 1999 a janeiro de 2000 (CASADO, 2000) e ao período de fevereiro de 2004 a janeiro de 2005 (Bandeira, 2005).

É possível identificar uma grande variação no valor da vazão média referente ao mês de fevereiro, devido à ocorrência da cheia de 2004, e a pouca variação do volume de água liberada pela UHE Xingó nos demais meses. Essa é uma situação típica desse período do ano quando ocorrem fortes chuvas no alto e médio São Francisco responsável por mais de 70% do volume de água que é armazenado nos reservatórios da bacia hidrográfica.

Observa-se no período de fevereiro de 1999 a janeiro de 2000 que o volume de água liberado permanece dentro da mesma faixa de valores que os demais períodos, demonstrando que é muito pequena a variação de vazão no baixo curso do rio São Francisco, em função da quantidade de água liberada pela UHE Xingó.

A variação da precipitação no baixo em quase Francisco, todos os meses monitoramento, não contribuiu para a variação do processo erosivo, uma vez que não proporcionou um escoamento superficial relevante, 0 constatado pelas observações de campo, levantamento de perfis pelo Método das perfilagens sucessivas, que permitiu a observação da erosão laminar e sua contribuição no processo de erosão marginal. Não houve contribuição freática creditada à infiltração das águas de chuva. As contribuições, quando ocorreram foram apenas devido às elevações de cota do rio. No período de coleta de dados não houve ocorrência de chuvas, o que poderia promover uma drenagem interna, nem houve uma variação muito grande na vazão liberada pela UHE Xingó.

A composição granulométrica dos taludes das seções A, B e C, levantados por Casado (2000) e Santos (2002) e da seção D, levantados por Bandeira (2005), apresentam maiores porcentagens de material arenoso, de baixa coesão e menores porcentagens de silte e argila, facilitando a ação do vento, da insolação e das ondas que incidem sobre os taludes marginais (Tabela 1).

A pouca variação do nível d'água devido à regularização da vazão faz com que exista uma faixa onde predomina o solo com textura fina onde as ondas entram em choque com a base do talude por longos períodos, provocando o solapamento, desagregação e arraste do material de base e ponto de confluência ou afloramento do fluxo de água subterrânea na interface do talude entre o rio e o aquífero. A instabilidade dos taludes pode estar associada à excessiva carga de água ou excessiva pressão da água.

Tabela 1 - Composição granulométrica das seções monitoradas. Fonte: Casado (2000); Santos (2002); Bandeira (2005).

	Taxa de	Altura Média do		Casado (2000)		Santos (2002)		Bandeira (2005)	
Seção	erosão	Barranco (m)	Camada	Silte + Argila	Areia (%)	Silte + Argila	Areia (%)	Silte + Argila	Areia (%)
	(m/ano)			(%)		(%)		(%)	
А	2,06	0,34	1	15,90	84,10	57,25	42,75	-	-
			2	87,78	12,05	68,71	31,29	-	-
			3	33,42	66,54	93,67	6,33	-	-
			4	0,53	99,30	2,66	97,34	-	-
В	4,06	4,32	1	90,14	9,71	27,85	72,15	-	-
			2	6,91	93,06	50,89	49,11	-	-
			3	11,07	88,93	19,65	80,35	-	-
			4	0,97	95,31	2,97	97,03	-	-
			1	96,95	3,04	92,80	7,20	-	-
	4,35	2,72	2	14,55	85,44	2,12	97,88	-	-
			3	11,21	88,79	82,38	17,62	-	-
			4	80,58	18,98	10,95	89,05	-	-
D	10,03	4,03	1	-	-	-	-	54,3	45,7
			2	-	-	-	-	15,6	84,4
			3	-	-	-	-	17,4	82,6

Nas seções A, B, C e D, a linha de água do rio atuou em contato constante com a superfície da base do talude, onde predomina o solo com textura de areia fina, sem coesão e de alta permeabilidade. Esta é a faixa de solo onde as ondas do rio entram em choque com o talude. Quanto mais se movimenta a água maior a capacidade de lixiviação do solo.

Nos períodos de janeiro a fevereiro de 2002, de abril a junho de 2004 e de setembro de 2004 a fevereiro de 2005, o fluxo das águas se mostra invertido, ocorrendo no sentido do talude para o canal do rio, fazendo com que a água que percola no interior do talude exerça, em virtude de sua viscosidade, uma pressão sobre as partículas de solo, conhecida como pressão de percolação. Esta pressão é muito maior na base do talude que na sua parte superior e que provoca a movimentação de partículas de solo com maior intensidade ao longo das linhas de fluxo, que se dirigem para a base do talude, atingindo mais facilmente uma situação de desequilíbrio, por arraste de partículas, do que nas partes superiores.

Conclusões

O rebaixamento do nível de água no Baixo São Francisco contribui bastante para instabilidade dos taludes e aceleração do processo erosivo.

Uma das principais causas da instabilização dos taludes é a direção do fluxo do lençol freático, aliado ao choque das ondas na base do barranco;

Ao gerar surgências nos pontos de afloramento da água subterrânea, a base do talude atinge uma situação de desequilíbrio, e se constitui em um importante fator de solapamento da base e desestabilização do barranco, contribuindo, desta forma, para o avanço da erosão marginal.

Considerando-se os aspectos de modificação de vazão e mudanças no lençol freático, a erosão marginal pode ser considerada como extremamente grave, dando origem à movimentação de massa de solo, que se deposita no canal do rio e causam danos econômicos, sociais e ambientais à região.

Referências

BANDEIRA, A. A. Evolução do processo erosivo na margem direita do rio São Francisco e eficiência dos enrocamentos no controle da erosão no trecho em estudo. 2005. 183 f. Dissertação (Mestrado em Desenvolvimento e Meio Ambiente). Programa de Pós-graduação em Desenvolvimento e Meio Ambiente (PRODEMA), Universidade Federal de Sergipe, São Cristóvão, 2005.

BERTRAND, F. Fluvial erosion measurements of stream bank using Photo-Electronic Erosion Pins (PEEP), In: University of Iowa Website. Disponivel em: http://ir.uiowa.edu/etd/642/>(2010). Acesso em: 09 de maio de 2012.

CHIEW, Y.M; NARASIMHAN, N.; CHU, J. Effect of Seepage on River Bank Stability. Anais da Fifth International Conference on Scour and Erosion (ICSE - 5), San Francisco, EUA, 2010.

CASADO, A. P. B. Estudo do processo erosivo na margem direita do rio São Francisco: Perímetro irrigado Cotinguiba/Pindoba – Baixo São Francisco Sergipano. 139 f. Dissertação (Mestrado em Desenvolvimento e Meio Ambiente) – Núcleo de Pós-graduação e Estudos do Semi-Árido, Universidade Federal de Sergipe. São Cristóvão, SE, 2000.

CASADO, A.P.B. et al. Evolução do processo erosivo na margem direita do Rio São Francisco (perímetro irrigado Cotinguiba/Pindoba – SE). **Revista Brasileira de Ciência do Solo**, v.26, n.1, p.231-239, 2002.

CONEJO, J. G. L. (coord.). Programa de Ações Estratégicas para o Gerenciamento Integrado da Bacia do Rio São Francisco e da sua Zona Costeira – PAE. Relatório Final. Projeto de Gerenciamento Integrado das Atividades Desenvolvidas em Terra na Bacia do São Francisco - GEF São Francisco (ANA/GEF/PNUMA/OEA). Subprojeto 4.5 B – Formulação de um Programa de Gerenciamento Integrado da Bacia do rio São Francisco e da sua Zona Costeira. Brasília: 2003.

GUIDICINI, G.; NIEBLE, C. M. **Estabilidade dos Taludes naturais e de escavação**. 2ª ed. São Paulo, SP: Edgard Blücher, 1983.

HOLANDA, F.S.R. et al. Riparian vegatation affected by bank erosion in the Lower São Francisco River, Northeastern Brazil. **Revista Árvore**, Viçosa, v.29, n.2, p.327-336, 2005.

HOLANDA, F.S.R. et al. Análise multitemporal e caracterização dos processos erosivos no Baixo São Francisco sergipano. **Revista Brasileira de Geomorfologia**, v.8, n.2, p.87-96, 2007.

HOLANDA, F. S. R. et al. Controle da erosão em margens de cursos d'água: das soluções empíricas à técnicas da bioengenharia de solos. **Revista RA'EGA**, Curitiba: Editora UFPR, n. 17. p. 93-101,2009.

HOLANDA, F. S. R. et al. Crescimento inicial de espécies florestais na recomposição da mata ciliar em taludes submetidos à técnica da bioengenharia de solos., **Ciência Florestal**, v. 20, n.1, p. 157-166, 2010.

MACIEL FILHO, C. L. Introdução à geologia de engenharia. 2ª ed. Santa Maria, RS: Editora da UFSM, 284p, 1997.

PIZZUTO, J., O'NEAL, M.; STOTTS, S. On the retreat of forested, cohesive riverbanks. **Geomorphology**, v.116, n.3-4, p. 341-352, 2010.

SIMON, A. et al. Bank and near-bank processes in an incised channel. **Geomorphology**, v.35, n.3-4, p. 193-217, 2000.

SANTOS, C. M. A erosão no Baixo São Francisco sergipano e os mecanismos de desestabilização dos taludes na margem do rio. 2002. 143 f. Dissertação (Mestrado em Desenvolvimento e Meio Ambiente). Programa Regional de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Federal de Sergipe, São Cristóvão, 2002.

VAN KLAVEREN, R. W.; MCCOOL, D. K. Erodibility and critical shear of a previously frozen soil. **Transactions of the ASABE**, v. 41, n.5, p. 1315-1321, 1998.

WYNN, T. M.; MOSTAGHIMI, S. Effects of riparian vegetation on streambank subaerial processes in Southwestern Virginia, USA. **Earth Surface Processes and Landforms**, v.31, n.4, p. 399-413, 2006.

Recebido em: 29/11/2011 Aceito em: 22/03/2012