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A simple site-diluted classical XY model is proposed to study the magnetic properties of the ferro-
magnetic polycrystalline Fe[Se2CN(C2H5)2]2Cl diluted with diamagnetic Zn[S2CN(C2H5)2]2. An extra 
superexchange interaction is assumed between next-nearest-neighbors on a simple cubic lattice, which 
are induced by a diluted ion. The critical properties are obtained by Monte Carlo simulations using a 
hybrid algorithm, single histograms procedures and finite-size scaling techniques. Quite good fits to the 
experimental results of the ordering temperature are obtained, namely its much less rapidly decreasing 
with dilution than predicted by the standard diluted 3d XY model, and the change in curvature around 
86% of the magnetic Fe[Se2CN(C2H5)2]2Cl compound.

© 2015 Elsevier B.V. All rights reserved.
The critical behavior of disordered magnetic systems has been 
the subject of a great amount of investigations during the last 
few decades both theoretically and experimentally (see, for in-
stance, [1,2] and references therein). From the theoretical point 
of view, one of the extensively studied models is the site-diluted
XY model. The XY model was originally introduced by Matsub-
ara and Matsuda [3] to describe the behavior of liquid helium [4], 
but has also been quite suitable to describe the critical behavior 
of some anisotropic insulating antiferromagnets [5,6]. The three-
dimensional (3d) version of the classical XY model with site di-
lution also showed a good agreement with some experimental 
results of some physical realizations, such as the antiferromagnets 
Co1−xZnx(C5H5NO)6(ClO4)2 [7] and [CopZn1−p(C5H5NO)](NO3)2
[8]. Recently, however, DeFotis et al. [9] presented the phase di-
agram for the pentacoordinate iron(III) molecular ferromagnet, in 
which the simple site-diluted XY model predictions are in com-
plete disagreement with the experimental data.

The pentacoordinate iron(III) molecular ferromagnet
Fe[Se2CN(C2H5)2]2Cl is, to date, the only known material to ex-
hibit three-dimensional XY ferromagnetic behavior [10]. Exchange 
interactions occur via intermolecular Se–Se contacts, the sele-
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nium atoms being covalently bonded to the iron, leading to a 
ferromagnetic ordering near 3.4 K. The magnetic lattice is a sim-
ple cubic one and this random compound, when diluted with 
non-magnetic Zn[S2CN(C2H5)2]2, presents an initial critical tem-
perature slope s = [(dTc/dp)/Tc]p=1 = 0.24(2) [9], where p is the 
concentration of the magnetic material Fe[Se2CN(C2H5)2]2Cl (the 
concentration of the non-magnetic material Zn[S2CN(C2H5)2]2 is 
q = 1 − p). This slope is well below the numerical results obtained 
for the 3d simple cubic XY model with site dilution, whose value 
is s = 1.0965(39) [11], and even below the slope for the Ising and 
Heisenberg models. In addition, there is also an inflection point 
in the critical temperature as a function of the concentration p, 
which cannot be accounted for by these simple diluted models ei-
ther. So, this striking behavior seem not to be a model question, 
but some other microscopic feature instead.

In Ref. [9] the authors have indeed commented on a possible 
superexchange pathway (although they claimed it seems not be 
so effective) between Fe atoms which might be responsible for 
the weak decline in the critical temperature with dilution. We 
will here pursue exactly in this direction and show that a super-
exchange interaction can in fact account for this small decline of 
the transition temperature with magnetic site concentration, and 
even for the inflection point, with a good agreement with the ex-
perimental data.
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So, in this work, without taking into account the complex lat-
tice structure of the pentacoordinate iron(III) molecular ferromag-
net, we propose an extended version of the simple site-diluted XY 
model, defined on a simple cubic lattice, in the same lines as the 
works on Fe–Al [12,13] as well as on Fe–Al–Mn systems [14]. In 
order to study the phase diagram of this disordered system, we 
further assume herein that the dopant, or the non-magnetic ion, 
can induce a superexchange like ferromagnetic interaction between 
its nearest-neighbor spins.

Thus, the system under investigation is given by a quenched 
site-diluted XY model Hamiltonian defined on a simple cubic lat-
tice with N sites, that can be written as

H = − J1

∑
〈i, j〉

εiε j[Sx
i Sx

j + S y
i S y

j ]

− J2

∑
〈〈i, j〉〉

εiε j[Sx
i Sx

j + S y
i S y

j ] , (1)

where the first sum is over nearest-neighbors (NN) 〈i, j〉 spins, 
the second sum over next-nearest-neighbors (NNN) 〈〈i, j〉〉 spins, 
�Si represents a three-dimensional classical spin �Si = (Sx

i , S
y
i , Sz

i ), 
where Sα

i are the α = x, y, and z Cartesian components of �Si with 
S2

i = (Sx
i )

2 + (S y
i )2 + (Sz

i )
2 = 1. J1 > 0 is the NN and J2 > 0 is the 

NNN ferromagnetic interactions, respectively. While the first sum 
in Eq. (1) runs over all nearest-neighbor pairs, the second sum 
runs only over the next-nearest-neighbor pairs having a dopant as 
a common nearest-neighbor, i.e., for situations in the lattice where 
a non-magnetic site k has the corresponding sites i and j as NN. 
In this sense, in a simple cubic lattice, which is the case for the 
pentacoordinate iron(III) molecular ferromagnet, depending on its 
concentration, a non-magnetic molecule can break up to six in-
teractions J1 and, on the other hand, can generate up to twelve 
interactions J2.

In Eq. (1), εi are quenched, uncorrelated random variables, rep-
resenting the existence of two kinds of particles in the system, 
namely the magnetic ones with εi = 1, and non-magnetic ones 
with εi = 0. The variable εi is chosen according to the probabil-
ity distribution

P (εi) = pδ(εi − 1) + (1 − p)δ(εi), (2)

where p is the concentration of magnetic sites, such that p = 1
corresponds to the pure case (q = 1 − p is the concentration of 
non-magnetic sites).

The above Hamiltonian has been studied through Monte Carlo 
simulations. First, we prepare a diluted lattice where a given con-
figuration of diluted sites {ε} refers to a single sample. For every 
thermodynamic observable Q , we first calculate the thermal av-
erage 〈Q {ε}〉 for a given sample {ε} and the results for different 
samples are later averaged as 

[〈
Q {ε}

〉]
av. In order to get the crit-

ical properties of the present model, for each sample of a given 
site-disorder configuration p, we used a hybrid Monte Carlo al-
gorithm consisting of one single spin Metropolis algorithm and 
one over-relaxation updates of the spins at constant configura-
tional energy [15,16]. This hybrid Monte Carlo method [18] has 
been implemented, and has been shown to reduce correlations be-
tween successive configurations in the simulation [11]. Close to the 
transition temperature we have also resorted to single histogram 
techniques to get the corresponding thermodynamic quantities. We 
have first computed the in-plane-magnetization, magnetic suscep-
tibility, and the Binder cumulant given, respectively, by

mxy = 1

L2

L3∑
i=1

[(Sx
i )

2 + (S y
i )2], (3)

χ = L2 〈m2
xy〉 − 〈mxy〉2

T
, u4 = 1 − 〈m4

x〉
2 2

, (4)

3〈mx〉
Fig. 1. (Color online.) Reduced critical temperature Tc(p)/Tc(1) as a function of the 
magnetic sites concentration p, for several values of the next-nearest-neighbor in-
teraction J2 ( J1 = 1). The experimental results, represented by the circles, were 
taken from Ref. [9]. The other symbols are simulation results. The dashed lines are 
just guide to the eyes. The simulational errors are smaller than the symbol sizes.

where L is the linear size of the cubic lattice studied, T is the 
temperature given in units of J/kB , kB being the Boltzmann con-

stant, and for the cumulant we have mm
α =

(
1
L3

∑L3

i=1 Sα
i

)m
, with 

α = x, y, or z. We have also considered J1 = 1, in such a way 
that J2 is measured in units of J1. Although the natural, or stan-
dard, choice of the Binder cumulant in the context of an XY type 
transition would include both the x- and y-components of the 
magnetization [17], it has been previously shown the x compo-
nent to be the most suitable one for computing u4 and getting the 
criticality of the model [18].

In addition, to reach the final results, for each dilution, temper-
ature, and lattice size, the MC estimates 〈Q {ε}〉 of thermodynamic 
quantities, for a given random distribution {ε} of diluted sites were 
averaged over different disorder realizations as

[〈
Q {ε}

〉]
av = 1

# {ε}
∑
{ε}

〈
Q {ε}

〉
, (5)

with #{ε} the number of total realizations considered.
Now, regarding the simulational numbers, for every sample the 

runs comprised 103 MCS per spin for equilibration and the mea-
surements were made over 5 × 104 MCS. The lattice sizes raged 
from L = 10, 20, 30, 40, the values being chosen so that p × L3

gives an integer number. We have used in the present paper 100
samples for all settings. As discussed in Ref. [11], such simulations 
could give a good account of the model with only NN interac-
tions, even concerning the critical exponents. We believe the same 
happens for this more general model, mainly for the critical tem-
perature, which is our main purpose for the experimental data we 
are comparing to.

The critical temperature Tc was obtained from the peak of sus-
ceptibility and cumulant crossing for different values of L. We have 
used the correlation length critical exponents of the XY universal-
ity class since it is independent of the value of the dilution [11]. 
The quality of the results are the same as those obtained for the 
pure model and extensively discussed in Ref. [11]. For this reason, 
we will only present herein the corresponding results for the crit-
ical temperature.

Fig. 1 exhibits, for several values of the NNN interaction J2, 
the reduced transition temperature Tc(p)/Tc(1) as a function of p, 
where Tc(p) is the critical temperature for the concentration p
and Tc(1) is the transition temperature of the pure system. In 
this case, as just a matter of comparison, we have considered 
ordinary next-nearest-neighbor interactions J2, in the sense that 
no superexchange character has been implemented. It means that 
second-neighbors interact, independently of their neighborhood. 
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Fig. 2. (Color online.) A square lattice sketch of the induced superexchange inter-
action J2 by the dopant (isolated circles). In (a), one dopant generates the NNN 
interaction J2. In (b), a cluster of two dopants (on an exaggerated scale). They are 
now farther from the magnetic ions and one has a NNN J ′

2 < J2.

One can clearly see that, as the next-nearest-neighbor interactions 
increase, the slope close to p = 1 decreases. Nevertheless, no value 
of J2 can give a satisfactory behavior of the transition tempera-
ture in the wider range of concentrations analyzed experimentally. 
This means that the dilution alone is not responsible for the ex-
perimental phase diagram.

The situation is indeed completely different when we further 
assume that the NNN interaction J2 is induced by a diluted site, 
or a dopant, in a kind of superexchange interaction. Recall that, in 
this case, only impurities whose nearest neighbors are magnetic 
sites enable the arising of a superexchange interaction between 
NNN magnetic sites. In addition, another effect should be included 
in the simulations. In Fig. 2(a) one has a square lattice view of 
a non-magnetic dopant where four NNN interactions are induced. 
However, when one has a cluster of two dopants, as in Fig. 2(b), 
they tend to get closer, since the unit cell of the selenium mate-
rial is 11.3% larger due to the greater size of Se versus S [9]. So, 
the distance from the dopant tends to increase in this case, and 
one expects a smaller superexchange interaction J ′

2. The same will 
happen for a J ′′

2 when three dopants are closer, and so on. We 
should say that when a link between two magnetic sites is neigh-
bor to two isolated non-magnetic sites, the superexchange is not 
doubled, just counted once. When we consider J2 = J ′

2 = J ′′
2 = . . . , 

we recover the ordinary NNN interaction model results shown in 
Fig. 1. Nevertheless, by assuming that only J2 is sufficiently high 
(i.e. J ′

2 = J ′′
2 = . . . = 0) we arrive at a global phase diagram de-

picted in Fig. 3. In this figure we have the results for J2 = 0.18 and 
J2 = 0 as well. One can notice now a good agreement with the ex-
perimental results. The theoretical critical line of the J2 = 0 model 
goes to the limit of the percolation threshold of the simple cubic 
lattice (we have not done simulations for p < 0.4, because in this 
case the transition temperature is very small). Moreover, for larger 
non-magnetic concentrations q, the results from the model con-
sidering next-nearest-neighbor interactions approach those of the 
pure model. This is understandable, since the higher the dilution, 
the more difficult it becomes to create new superexchange inter-
actions, and the system ends up with only NN interactions (a fact 
that does not happen in the model with ordinary NNN couplings). 
Fig. 3. (Color online.) The same as Fig. 1, for J2 = 0 and J2 = 0.18, assuming that 
the superexchange interaction J2 is induced by the presence of a diluted site. pc is 
the percolation threshold for the simple cubic lattice.

Fig. 4. (Color online.) A closer view of the phase diagram from Fig. 3 in the region 
near the pure system for J2 = 0 and J2 = 0.18. The inset shows the estimate of the 
corresponding slopes as a function of p. The arrows indicate the inflection point. 
Regarding the simulations, the errors are smaller than the symbols sizes.

This can also be seen as follows. For low concentrations q one has 
mostly one-site clusters, and 4n NNN superexchange interactions, 
where n is the number of non-magnetic sites given by n = qN . 
As one has in total 2N NNN pairs, the concentration of superex-
change interactions is given by 4n/2N = 2q, that is, the double 
of the vacancies concentration. On the other hand, as q increases, 
larger clusters, in smaller number, are built and, for high q, only a 
constant small number of superexchange interactions are induced, 
and this concentration goes to zero in the thermodynamic limit. 
So, the superexchange interactions cease to be induced for suffi-
ciently large values of q.

It is also interesting to look at the phase diagram closer to the 
pure model, as is shown in Fig. 4, where the discrepancy from the 
simple site-diluted model and the one considering superexchange 
next-nearest-neighbor interactions is clearer still. In addition to 
the quite good fits to the experimental data, one can also note, 
from the inset in Fig. 4, that the present model also exhibits an 
inflection point around p = 0.80(5), close to p = 0.86 that is ex-
perimentally observed. Of course, this last point can be seen as an 
over-interpretation of our results, once we have introduced a use-
ful, but still ad-hoc assumption.

In summary, we have proposed a simple diluted XY model on 
a simple cubic lattice where superexchange interactions are in-
duced between NNN via dilution sites. Not only the slow slope of 
the critical temperature as a function of the concentration agrees 
well with the experimental data, but also an inflection point of 
the critical curve is present, and quite close to the corresponding 
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experimental concentration. Of course, this is only a theoretical as-
sumption still needing a more experimental evidence.

A little more words are, however, worthwhile in commenting 
the present simulations. First, it is well known that MC simula-
tions are not suitable in adjusting theoretical parameters to exper-
imental data, mainly due to computational costs. In the present 
case things are better in the sense that we have just one pa-
rameter. As one knows the critical temperature for the pure XY 
three-dimensional model with reasonable accuracy, this serves to 
estimate J1. But, renormalizing the critical temperature data by 
its value for the pure model, we can get rid of J1 and just fit in 
fact the ratio J2/ J1. So, as we can further consider J1 = 1 in our 
equations, all the simulations have to be done for different values 
of the next-nearest-neighbor coupling ratio. This makes the fitting 
problem an easier one.

As a second remark, we recall that we have used FSS to get 
Tc(p), so the corresponding values of the critical temperature are 
indeed very accurate. This means that any problems with the com-
parison to the experimental data, if any, would be related to the 
quantum nature of the spin state, since we have considered a clas-
sical spin model. However, as Fe ion can have a spin-3/2, the use 
of a classical model can, in some sense, be suitable for the present 
case.

As a final comment, from the critical temperature of the 
pure model kB Tc/ J1 = 1.5518 [11] one can estimate the nearest-
neighbor interaction J1 = 0.189 meV, which should be compared 
to 12.8 meV obtained for the Fe–Mn–Al alloys [12–14] (or to 
10–50 meV as is usual for ferromagnetic systems). These two or-
ders of magnitude smaller can be understood since for the present 
system the ordering temperature is very low, near 3.4 K, instead 
of about 1000 K, as is the case of the Fe based alloys. On the other 
hand, the ratio J2/ J1 = 0.18 is within of what is expected for a 
second-neighbor interaction. Of course, more theoretical and ex-
perimental studies on these systems would be very welcome.
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