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Abstract
In this paper, we proposed a two-leg spin ladder model for the description of magnetic properties of the β-TeVO4 compound.
Quantum Monte Carlo (QMC) simulation was applied to describe the temperature-dependent magnetic susceptibility data
for low temperatures. The two-leg spin ladder model presents a spin gap, and we suggests that β-TeVO4 compound presents
such a spin gap also, and therefore, the model proposed here can be experimentally tested by measuring the spin gap of
the compound. The susceptibility phase diagram has a rounded peak in the vicinity of T ≈ 12.2 K and obeys Troyer’s law
for low temperatures and Curie’s law for high temperatures. We also study the susceptibility diagram in low temperatures
and found the spin gap � = 8.06 K. The linearization of the equation for susceptibility in low temperatures allows us to
obtain the spin gap value, and such a linearization was made with the data from the QMC simulation. In all the results,
there is a very good agreement with the experimental data. We also show that the spin gap is null and the susceptibility is
proportional to T for low temperatures when relatively high values of the ladders’ coupling is considered. The theoretical
results are compared with other studies as well as applied to describe the susceptibility phase diagram of consolidated spin
ladder compound, C9H18N2CuBr4.
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1 Introduction

Low-dimensional magnetic systems present different and
interesting exotic magnetic properties, and the study of
the physical behavior in these systems has attracted the
attention of many researchers in the recent years [1–3, 6,
9]. Complex phase diagrams, exotic magnetic behavior, and
the fact that these compounds can be used as a laboratory
of the quantum spin models have been some of the reasons
for an increase in the studies of these systems. Among
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these systems are the spin ladders: α-TeVO4, β-TeVO4,
(C5H12N)2CuBr4 (bis(piperidinium) tetrabromocuprate(II),
also known as BPCB), C9H18N2CuBr4, (VO)2P2O7,
SrCu2O3, CaCu2O3, whose phase diagrams depend on the
composition of each element and on exchange couplings
[1–9, 11]. One of the open questions about such systems is
whether or not a two-leg spin ladder compound will exhibit
superconducting properties and under which physical
conditions [12, 13, 29].

A spin ladder, with two or more legs, in this work
presents as a prototype of a quasi-unidimensional system
that exhibits properties that are between one and bi-
dimensional systems [8, 9, 14]. In high magnetic fields, the
temperature-dependent magnetic susceptibility is written
in terms of a universal scaling function [14]. Such
antiferromagnetic ladders with a spin gap � are generally
characterized by a gap in their spin excitation spectra [15],
and this spin gap, �, is the difference between the energies
of the lowest excited state and the ground state [15–17].

In general, spin ladders with an even number of legs
(simplest spin ladder model) have a short-range magnetic
order and a finite energy gap and are formed by two chains
of spins which interact strongly via an exchange coupling
J⊥, and the spins interact with their neighboring chain
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through an exchange coupling J‖ [8, 14]. The model most
used to describe the magnetic properties of the β-TeVO4

compound has been the zigzag Heisenberg chain [18, 19].
Until then, there is not any theoretical or experimental
studies that consider β-TeVO4 like a spin ladder [1, 18–
21]. Therefore, description of a possible spin gap � for
this material does not exist [1, 18, 22]. In this paper, we
propose to describe theoretically the β-TeVO4 compound
with a two-leg spin ladder model, thereby obtaining a gap
(�) that can be subsequently verified experimentally.

In particular, the zigzag Heisenberg model has been
applied to describe the phase diagrams of β-TeVO4 [1, 18,
19] and, in particular, the susceptibility and magnetization
diagrams, but these models take into account the exchange
interactions between the first and second nearest neighbors so
as to be able to fit the experimental data to the modelling used.

In literature, there is no description of the spin gap
for this compound, and here, we propose a mechanism to
test experimentally the two-leg spin ladder model used to
estimate the gap value. The zigzag spin 1/2 chain, with
nearest and next-nearest neighbors interactions J1–J2, can
be seen like a two-leg spin ladder with the conventional intra
and inter chains (see [10] 10, [31] 31, [25], [26] and [28] for
more details). This way, we use the spin ladder model with
two legs. In this work, we map the J1–J2 and use the two-
leg spin ladder model with only intra (J‖) e inter chain (J⊥)
interactions. This type of mapping was done to describe
the magnetic properties of the CaV2O5 compound, in some
references considered as a zigzag chain [32] and in another
considered as two-leg spin ladder [33].

Initially, we discuss the results obtained for various
J⊥/J‖ values and then we compare the results obtained
for the C9H18N2CuBr4 compound (susceptibility diagram).
In order to theoretically obtain the spin gap in β-TeVO4,
we propose using an antiferromagnetic spin 1/2 Heisenberg
two-leg spin ladder model in the presence of a magnetic
field for ladders with J‖ and J⊥. (They are the dominant
interactions. See Savina et al. [18, 19].) The article
organization is as follows: in Section 2, the simulation
method and results are presented. In Section 3, some
concluding observations are presented.

2Methods and Results

For the simulation of physical properties of β-TeVO4, we
use the Heisenberg model for a spin ladder with two legs
coupled for H > 0 [16]:

H = J‖
∑

i,j=1,2

Si,j · Si+1,j + J⊥
∑

i

Si,1 · Si,2

−gμBH
∑

i

(Sz
i,1 + Sz

i,2), (1)

The indexes 1 and 2 refer to the contents of each chain, Sν
i

(ν = x, y, z) represents the Pauli matrices at the sites i,
j is the index associated with the step, H is the externally
applied magnetic field, g is the Landé factor, and μB is
the Bohr magneton. The first term of Hamiltonian (1) is
linked to coupling between spins in the same chain, the
second term is related to the coupling of the spins in
different legs, and last term is concerning to the external
magnetic field applied to the system. This model can be
extended to similar systems such as the three-leg and four-
leg spin ladders, for example. There is the possibility of
more two interactions, three-dimensional coupling J3D , and
interaction from Dzyaloshinskii–Moriya type [14, 18, 23].
However, they are much smaller than J‖ [24] and so will not
be taken into consideration in our analysis.

We investigated the susceptibility behavior of the weak
magnetic field and H = 0 T in order to obtain spin
gap. To determine the spin gap, the magnetic susceptibility
experiment was simulated using the Quantum Monte
Carlo (QMC). The QMC simulations were made through
the Stochastic Series Expansion (SSE) representation
of the associated path integral for a mixed (ferro-
antiferromagnetic) ladder system with two legs [27]. The
values for J⊥ and J‖ were obtained from reference [19]
and reflect well a major feature of spin ladders. The QMC
simulations were performed for two-leg ladders with a size
of L = 256 (256 × 2), where L is the number of spins
in each leg, under periodic boundary conditions, with up
to 1,000,000 steps for balance and 2,000,000 steps to the
measurements. The magnetization M and the susceptibility
χ were obtained using [27]

M = 〈∑iS
z
i 〉

N
, (2)

χ = β
〈(∑iS

z
i )

2〉
N

, (3)

where kB is Boltzmann’s constant, β ≡ 1/kBT , and N is
spin numbers of the system.

Figure 1 displays the configurations from path Exchange
Js in isotropic (J) and anisotropic (J1, J2) form. The
mapping done by the authors from reference [10] consists
of decimating (real space renormalization group decimation
process) the spin chains dividing in blocks and reducing the
degrees of freedom of the system. Observe that in dividing
the chain in zigzag in two blocks, there exist interactions
between the spins of the same block and between spins of
different blocks. When mapping the chain using a model of
spin ladder, we considered the interactions between spins of
the same block as being the interactions of spins belonging
to the same chain and the interactions between spins of
different blocks as being the interactions between spins of
different chains, therefore the choice of J‖ as being J2 and
J⊥ as being J1, as shown the Fig. 1.
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Fig. 1 Left side shows isotropic
chain (isotropic J) of path
exchange and right side
anisotropic exchange J1 and J2

The graphs of Figs. 2 and 3 show a comparison between
the results obtained from the simulation of two-leg spin
ladders, using the model proposed by (1) and results already
known in the literature, in a comparative analysis with the
susceptibility data of the C9H18N2CuBr4 compound. One
of the characteristics of the susceptibility behavior of two-
leg spin ladders is a flattening of their peak with increasing
ratio J⊥/J‖ as predicted by Tonel in Ref. [29]. In Fig. 2,
we can see that there is excellent agreement between the
proposed theoretical model and the experimental data in all
temperature range. Integrable spin ladder models generally
disagree with experimental data at high temperatures. In the
simulations, for C9H18N2CuBr4, the values of J⊥ and J‖
used were extracted from reference [5].

The analysis from temperature-dependent magnetic sus-
ceptibility (Fig. 4) shows the typical magnetic character-
istics of spin ladders: There is a rounded peak around
the magnetic transition temperature (12.2 K) [8, 14]. In
low temperatures, the susceptibility decays exponentially in
accordance with Troyer’s law (Fig. 5). The spin ladders were
considered in isolation, i.e., J2D � J⊥, J‖, where J2D is
the exchange coupling between distinct ladders [8, 9, 14, 18,
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Fig. 2 Temperature dependence of the theoretical magnetic suscepti-
bility (arbitrary units) for H = 0T . We use three J⊥/J‖ (Jperpen = J⊥
and Jparallel = J‖) ratio values. We can observe a flattening in the peaks
and an increase in the transition temperature in the function of the ratio
J⊥/J‖. This result is in excellent agreement with that obtained from
Reference [29]

19]. When J⊥ ≈ J‖ ≈ J2D , this system presents a spin 1/2
Heisenberg model in a squared lattice behavior [8, 9].

There are many ways to obtain the exchange values. In
Savina et al. [19], the values of the exchange couplings were
obtained by adjusting the susceptibility curve, χ(J1/J2),
and by the magnitude and the temperature position of the
maximum of the magnetic susceptibility in function from
ratio J‖/J⊥, Tmax(J‖/J⊥). In this work, we used the values
obtained in the cited paper: J⊥ = 29.5 K and J‖ =
−38.3 K [19]. This is a typical empirical adjustment, often
present in theoretical and/or experimental studies of spin
ladders [8, 9]. The best fit from experimental data of the
susceptibility is obtained when we assume an empirical
relation T χmax ∝ |J‖| [8, 18, 19]. The value of T χmax

would be related to the spin gap �/kB of the system, which
can easily be obtained from the fit of the susceptibility curve
in low temperatures, allowing us to calculate the exchange
values [30]. As can be seen in Fig. 4, the agreement between
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Fig. 3 Susceptibility phase diagram (and experimental data for
C9H18N2CuBr4) with two J⊥/J‖ (Jperp = J⊥ and Jparallel = J‖)
ratio values. The experimental data were obtained from Awwadi et
al. [5] and the QMC data were obtained via (3). The concordance
between simulation and experiment is excellent and the behavior of the
susceptibility in the limits of high and low temperatures obeys (5) and
(4), respectively. In high temperature, all models (also experimental
data) behave as described by (5). The exchange interactions are
(antiferromagnetic, positive sign) J⊥ = 7.95 and J‖ = 4.1, J⊥/J‖ ≈
0.5
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Fig. 4 Magnetic susceptibility in magnetic field H = 0.1 T. The
experimental data were obtained from Pregelj et al. [1], and the QMC
data were obtained via (3). The concordance between simulation and
experiment is excellent, and the behavior of the susceptibility in the
limits of high and low temperatures obeys the (5) and (4) respectively.
The inset shows χ(T )T for single crystal of β-TeVO4 fit experimental
data using the QMC simulation. The estimate of T χmax allows us to
obtain the values of the exchange parameters [19]

the results obtained from fits and the experimental data is
excellent in all temperature range.

There are some proposals for the expressions of the
calculation (susceptibility and gap spin), as used by
Tonel et al. [29], that also investigated the behavior of
the susceptibility of BPCB through a model with an
exactly soluble spin ladder via the Bethe ansatz, but the
agreement with the experimental results was only good
at low temperatures. For this, the authors considered
� = J⊥ − J‖ for BPCB. Here, we have used the
analysis from temperature dependence susceptibility using
Troyer’s law [29], considering that the susceptibility decays
exponentially,

χ = C · e−�/T

√
T

, (4)

where C is a constant, � is the spin gap, and T is the
temperature. The exponential decay at low temperatures
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Fig. 5 QMC simulations from magnetic susceptibility in low
temperature range for the determination from spin gap (�). By using
(4), the linearization provided � = 8.06 K. The experimental data are
from Pregelj et al. [1]

indicates the presence of a spin gap [29]. Chains with an
odd number of legs do not exhibit this kind of behavior at
low temperatures [14]. The linearization of (4) allows us to
obtain the value of the spin gap, and the linearization was
made with the data from the QMC simulation and can be
seen in Fig. 5. The gap obtained via the linear fit is � = 8.06
K, a small value when compared to another compounds [9].

Deriving the (4), we get

− ∂

∂β
ln χ = � − 1

2
T ,

which physically it means that for systems where the rate
of change of ln χ goes to zero (one-dimensional magnetic
systems, for example) the gap disappears when T → 0,
even though it remains finite on spin ladders. The agreement
between experiment and theory persists in this paper even
at high temperatures (T > TN ), as can be seen in the inset
of Fig. 4. At high temperatures, the susceptibility follows
Curie’s law [14]:

χ ∝ 1

T
(5)

Finally, it is important to note that results show excellent
agreement between the experimental data and the QMC in
all temperature range analyzed.

3 Concluding Remarks

In this paper, we presented the results of QMC simulations
of the two-leg spin ladder model with applications in the
description of magnetic properties of C9H18N2CuBr4 and
β-TeVO4 compounds and the theoretical prediction of the
spin gap from β-TeVO4 compound, being the experimental
verification of this spin gap a test criterion of the model
proposed here. In this work, we map a zigzag chain in a
spin ladder model as described in reference [10]. We study
the diagram from magnetic susceptibility in low magnetic
field, with null magnetic field and for some values of
interactions J⊥ and J‖, the susceptibility phase diagram at
low temperatures, and the χ(T )T product. Based on the
susceptibility diagram at low temperatures, we found, using
a spin ladder model, a spin gap value of � = 8.06 K.
The two-leg Heisenberg (with the parameters described in
the text) predicts the existence of a small gap. We believe
that further experimental studies are necessary to test
the hypothesis that the β-TeVO4 compound (its magnetic
structure) can be mapped from a zigzag Heisenberg chain to
a spin ladder with two legs.
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