
Towards Interoperability between Heterogeneous
Distributed Components

Sidney Cassemiro do
Nascimento

Instituto Federal de Educação,
Ciência e Tecnologia de

Sergipe (IFS)
sidneycn@gmail.com

Felipe Oliveira Carvalho
Departamento de

Computação
Universidade Federal de

Sergipe (UFS)
ocfelipe@gmail.com

Tarcisio da Rocha
Departamento de

Computação
Universidade Federal de

Sergipe (UFS)
tarcisiorocha@gmail.com

ABSTRACT
The popularization of middleware occurred in recent years
promoted the emergence of different technological models.
Because of this diversity, interoperability between different
models of software components becomes essential to promote
the integration of heterogeneous parts. The problems in-
volved with interoperability are treated in general by adopt-
ing middleware systems able to mediate and establish com-
munication between different platforms. In this context, this
paper proposes the InteropFrame, a framework for interop-
erability between different models of software components
(e.g. OpenCOM and Fractal) that aims its extensibility to
support other models through the development of plugins.

Keywords
Component Models, Heterogeneous Components, Middle-
ware, Interoperability, Distributed Systems

1. INTRODUCTION
The demand for solutions in complex distributed systems

is replacing the vision of homogeneous distributed systems
where domain-specific applications are developed using plat-
forms and middleware specifically designed for this domain.
Independent technological solutions have been interconnect-
ed to create even richer structures, the so-called system of
systems (SoS). One of the main challenges of these intercon-
nections is the issue of interoperability: the ability of these
systems to connect, to exchange data and to communicate
[3, 11, 4].

One technique that has been widely used in recent years
in the development of distributed systems platforms is the
Component-based software engineering (CBSE) [19]. As a
result of the successful use of software components, several
different component models have emerged. OpenCOM [7],
Fractal [5], Spring [12], EJB [10], CCM [16] and SCA [14]
are some examples of these models. The heterogeneity of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ARM’13, December 9-13, 2013, Beijing, China
Copyright 2013 ACM 978-1-4503-2553-0/13/12 ...$15.00.

component models for different domains of applications is a
challenge for the development of contemporaneous distrib-
uted systems. In this context, when the parts that compose
these systems are developed on platforms that use different
component models, some solutions have to be adopted for
the interconnection. This lack of standardization limits the
reusability and the composition of components.

A software component model defines a set of standards for
component implementation, naming, interoperability, cus-
tomization, composition, evolution and deployment [8]. A
framework is an abstraction that provides a very high degree
of reuse on software components. Thus, a framework for
interoperability between different models of software com-
ponents can be used to promote flexibility in the develop-
ment and standardization of distributed applications, allow-
ing reuse and composition of components developed in dis-
tinct models of distributed programming.

In this paper, we propose a framework to assist software
developers on the task of implementing distributed applica-
tions that use distinct component models (e.g. OpenCOM
and Fractal). In addition, the proposed framework has been
designed to: (i) allow modular extensibility to support other
component models, and (ii) allow the developer to choose
the type of communication between distributed components
(RMI or SOAP Web Services [22]), also allowing extensibil-
ity to other types of remote binding (e.g. RESTFul Web
Services [18] and XML-RPC [23]).

The paper is structured as follows: Section 2 presents
some related work; Section 3 presents the architecture of
the proposed solution; Section 4 describes the scenario used
for the evaluation of the proposed framework; and Sections
5 and 6 show, respectively, the discussions on the results
obtained in the experiments, and the conclusions and future
work.

2. RELATED WORK
The problem of interconnection between systems based on

components of different models has been addressed in some
academic work. These will be highlighted: VCF (Vienna
Component Framework) [15], SCIRun2 [24], Interoper-
ability of grid component models [13] and FraSCAti
[21].

In the first work, it was proposed a framework developed
with the Java language that allows the composition of differ-
ent component models using facades of abstraction for each
model. However, this paper does not discuss the distributed
issue, being only a integration at the local level between the

Figure 1: Architecture of the distributed framework InteropFrame.

components.
A second related work is the SCIRun2 framework [24],

[17] that allows the integration of different component mod-
els into a single environment. The SCIRun2 offers a plu-
gin architecture for component models and an approach
based on bridges between them. However, the proposed
model only enables interoperability between two component
models: CCA (Common Component Architecture) [2] and
CORBA (Common Object Request Broker Architecture)
[16]. This solution supports communication among distrib-
uted components based on RMI (Remote Method Invoca-
tion) [20], [6].

In the third work, it was proposed a framework that en-
ables interoperability between two component models for
grid applications: GCM (Grid Component Model) [13] -
which is based on Fractal - and CCA. The approach is based
on mediators and adapters that implement the design pat-
tern Adapter (Wrapper). However, this solution did not
specify the distributed aspect, and neither it allows the con-
nection between the components at runtime.

In the fourth work, it was proposed the FraSCAti frame-
work. FraSCAti is a platform for hosting SCA applica-
tions and provides non-functional services such as transac-
tion and security management. It gives runtime support for
SCA with dynamic reconfiguration capabilities and runtime
management features. The platform also supports: (i) in-
teroperability between Java 5, Java Beans, Scala, Spring,
OSGi, Fractal, BPEL and scripts based on the Java Script-
ing API; (ii) binding communication protocols such as Java
RMI, SOAP, HTTP, JSON-RPC, or discovery protocols like
SLP, UPNP, or integrated technologies like OSGi, JNA.

3. PROPOSED SOLUTION:
INTEROPFRAME

The role of InteropFrame is to provide a transparent
solution for interoperability between systems based on dis-
tributed components of different models, allowing the com-
ponents involved in the construction of distributed appli-
cations to interact through the provided automatic mecha-
nisms of interoperability. The approach used for this is the
automatic generation of proxies which mediate communica-
tion between distributed heterogeneous parts.

3.1 Architecture
Figure 1 presents the detailed architecture of the distrib-

uted framework InteropFrame. Its main modules are: (i)
Distributed Configurator (DC) - responsible for man-
aging the interoperability service between distributed com-
ponents, coordinating the operations of the other modules of
the distributed framework; (ii) Component Model Plu-
gins (CMP) - each plugin gives the framework the support
to a different component model; and (iii) Binding Gen-
erator Plugins (BG) - each plugin is responsible for the
automatic generation of source code of a different kind of
binding between remote components. The CMP is com-
posed of the following sub-modules: the Proxy Gener-
ator (PG) - responsible for the automatic generation of
proxies that enable interoperability between heterogeneous
distributed components; the Proxy Assembler (PA) - re-
sponsible for loading the proxies created by PG on demand
and for providing the interoperability service between dis-
tributed components; and Proxy Repository (PR) - to
manage the catalog of proxies generated by PG. The Proxy
Generator can use a specific type of Binding Generator to
insert into the proxy component the code that promotes the
remote interconnection.

Currently, InteropFrame supports interoperability between
distributed components of the OpenCOM and Fractal mod-
els, and supports the binding between remote components
using the Java RMI mechanisms or SOAP Web Services.
Aiming the extensibility of this framework, Component Mod-
el Plugins (CMP) and Binding Generator Plugins (BG) mod-
ules were designed to support different types of component
models and bindings as completely independent plugins.

3.2 Operation
To illustrate the operation of the framework a generic

problem will be taken: interconnecting two components “A”
and “B” with the complicating factor that they are in differ-
ent nodes of a network and they are developed in different
component models, “A” in OpenCOM and “B” in Fractal.
In practice, “A” and “B” can be components of two subsys-
tems (the first one developed in OpenCOM and the second
in Fractal) that need to interact, thereby forming a more
complex heterogeneous system.

Figure 2: Diagram of the InteropFrame operation.

To promote this interconnection, the framework would re-
ceive as input from the user: the identifiers of components
“A” and “B”, the interface to be used in this interconnection
and the type of binding to be used (RMI will be taken as
example). Whereas “A” and “B” are, respectively, the client
and server components, because “A” uses a service from “B”,
the framework would proceed with the following actions on
both sides (Figure 2):

• On the client side

(1C) The Distributed Configurator (DC) checks whether
the client side proxy needed to promote interop-
erability is already in the repository, otherwise
it prompts the generation of this proxy in the
step 2C. If the proxy component already exists,
the next step would be 5C, where this component
would be used by the proxy assembler;

(2C) The DC asks the proxy generator submodule (PG)
of the OpenCOM component model to automat-
ically generate the code of component “X” repre-
senting client side proxy;

(3C) The PG asks the binding generator submodule
(BG) based on RMI to automatically generate the
code part of the component “X”, responsible for
remote communication;

(4C) The PG stores the component “X” in the proxy
repository (PR);

(5C) The DC requests the proxy assembler (PA) to
proceed with the initialization of the client side
proxy;

(6C) The PA obtains and initializes the client side com-
ponent “X” in the OpenCOM execution environ-
ment, connecting component“A”receptacle to the
provided interface of the proxy “X”.

• On the server side

The steps 1S to 6S performed on server side are anal-
ogous to the steps 1C to 6C on client side, whereas
the generated proxy component is “Y”. The server side
proxy “Y” (also called skeleton) represents the compo-
nent “A” on the server side that requests the services
of the component “B”.

Once both sides are configured, the component “A” be-
comes able to use the operations of the component“B”trans-
parently. This transparency is achieved through the cre-
ation, instantiation and automatic connection of intermedi-
ate components “X” and “Y” that are responsible for propa-
gating through network the calls and responses of the inter-
actions between the components “A” and “B”. In practice,
“X” and “A” are components of the same model, so they can
connect directly. Components “Y” and “B” are also of the
same model. “A” requests to “X” what it would request to
“B”, as “X” has the same interface as “B”. “X” receives the
request, forwards to “Y” through RMI. “Y”, in its turn, for-
wards the request to“B”. The response of the request follows
the reverse path.

4. PROPOSED SCENARIO FOR EVALUA-
TION

To evaluate the proposed framework, a scenario of het-
erogeneity was implemented, based on a composition of a
Comanche Web Server [19] with a set of desired character-
istics.

4.1 The Comanche Web Server
Comanche is a simple web server that offers the basic fea-

tures of a web server, such as the return of static HTML
pages. The seven components that compose a Comanche
Web Server are described as follows: (i) Receiver - Compo-
nent responsible for receiving the incoming HTTP requests,
(ii) Scheduler - Component responsible for the scheduling
of HTTP requests for analysis, (iii) Analyzer - Component
that performs the analysis of HTTP requests, (iv) Logger
- Component that records the incoming HTTP requests, (v)
Dispatcher - Component responsible for the interpretation
of incoming HTTP requests, (vi) FileHandler - Compo-
nent that performs the request handling of a file and (vii)
ErrorHandler - Component responsible for handling errors
(if any exist).

The role of the Frontend is to receive and schedule the
incoming HTTP requests, while the Backend is responsi-
ble for the analysis and interpretation of HTTP requests.
To improve the performance of the Comanche Web Server,
aiming a more homogeneous distribution of the workload in
order to avoid overloading, parts of the Comanche services

Figure 3: Comanche Web Server Architecture with distributed components.

can be distributed to other hosts. This is a scenario of load
balancing use in distributed systems.

4.2 InteropFrame Use
In the experiment, a realistic scenario with two computers

in the same network was used. The first computer hosted the
Frontend and the second hosted the Backend of a Comanche
Web Server developed with distributed components. In this
scenario, the Backend used Comanche components available
in the Fractal code base and the Frontend part was imple-
mented in the OpenCOM model to simulate a heterogeneity
scenario.

Figure 3 shows the ProxyAnalyzer and SkeletonAnalyzer
components, which were automatically generated by Interop-
Frame to promote interconnection between the distributed
parts of the Comanche Web Server. Whereas the Frontend
was developed in OpenCOM and the Backend in Fractal, the
task of the framework was to interconnect these two hetero-
geneous subsystems composing a single functional system.

To enable the interconnection between the OpenCOM com-
ponent Receiver located in the Frontend and the Fractal
component Analyzer located in the Backend, it was only
needed to inform InteropFrame the identifiers of these two
components, the interface used in the interconnection and
the type of binding. After that, InteropFrame automatically
generated the proxies that promote the transparent connec-
tion between these remote components: ProxyAnalyzer -
the OpenCOM component that represents locally the remote
component Analyzer and SkeletonAnalyzer - the Fractal
component that defines a receptacle for requesting services
from the Analyzer component.

In this scenario, the components for the Comanche Web
Server are located in a local network. For this reason, the
binding generator which makes use of Java RMI mechanisms
for remote communication between the heterogeneous dis-
tributed components was used. Considering the same ex-
ample for different networks, it was used a similar approach
with the adoption of the binding generator which uses SOAP
Web Services.

In this example, with the InteropFrame use, the binding
between the OpenCOM component Receiver and the Fractal
component Analyzer occurred in a transparent and dynamic
form.

5. EXPERIMENTAL RESULTS
In this section, it will be presented the results of the evalu-

ation of the framework in the proposed distributed scenario,
in aspects of performance, usability and extensibility.

5.1 Performance Evaluation
To carry out the evaluation of performance, it was mea-

sured systematically the time that the framework took: (i)
to connect a component to another remote one and (ii) to
establish communication between the components, varying
the component models between OpenCOM and Fractal, as
well as the variation of the binding between Java RMI and
SOAP Web services among these two component models.

To test the influence of the bindings on performance, two
experiments were implemented for each evaluated scenario,
varying the intermediate mechanism of remote communica-
tion among the distributed heterogeneous components be-
tween Java RMI and SOAP Web Services.

In the experiments, for each parameter variation in the
performance evaluation, each set of tests was run 11 times
to allow an analysis of the execution with a more accurate
average time. It was observed that the first run presented an
outlier, so this measured time could be discarded, as the sys-
tem was not stable yet. Thus, this first value was excluded
from all samples. The time was measured using two static
methods of the java.lang.System class: currentTimeMillis
and nanoTime.

To perform the performance evaluation of the framework,
two computers were used: (i) Intel (R) Core (TM) i5 CPU
M450 2.40GHz with 4GB of RAM, with the operating sys-
tem Microsoft Windows 7 Professional 64-Bit Service Pack
1 installed and (ii) Intel (R) Core (TM) i5 CPU M2450
2.50GHz with 6GB of RAM, with the operating system
Microsoft Windows 8 Pro 64-bit installed. To connect the

(a) Worktime results.

(b) Workload results.

Figure 4: Test results between OpenCOM and Frac-
tal.

client and server machines it was used a cross cable, so the
network traffic between the machines was isolated from all
other traffic to avoid interference in the results. Further-
more, as far as possible, other processes/applications that
were competing for network resources or running in parallel
to the tests were disabled on the machines, except those nec-
essary for the correct operation of the operating system. In
order to perform the tests, all the source code was compiled
and run from the Eclipse Juno IDE, using the virtual ma-
chine Java (TM) SE Runtime Environment (build 1.7.0 11-
b21).

To test the performance, three tests were made: (i) the
first performance test used a scenario with homogeneous
components in the frontend and backend using the Fractal
component model, (ii) the second performance test also used
a homogeneous scenario with all components implemented
in the OpenCOM component model and (iii) for the third
test performance it was used a heterogeneous scenario with
OpenCOM components in the frontend and Fractal compo-
nents in the backend. The experimental results of the third
test are presented in the graphs of Figure 4, which show the
same patterns observed in the experiments for each evalu-
ated scenario.

In Figure 4(a) the results obtained in the performance
evaluation of the connection between two distributed com-
ponents are presented. In this graph, the X axis indicates
the experiment number performed and the Y axis indicates
the time required for the connection between the remote
components. This experiment includes the total time for
generating, compiling and loading the proxies. Figure 4(b)
shows the results obtained in the performance evaluation of
communication between remote components. In this graph,
the X axis represents the number of test runs and the Y axis

Figure 5: Comparison of the worktime means

Figure 6: Comparison of the workload means

represents the time required for the communication.
A comparison between the average times for the connec-

tion between the remote components related to the three
previous experiments are presented in the graph of Figure
5. There is an overall better performance of the experiments
using the binding with RMI than with SOAP. This occurs
because this process involves the instantiation and activation
of proxies, which is a more expensive process using SOAP
Web Services than Java RMI. Another aspect that can be
observed is that the mean values do not differ greatly from
one worktime to another. The graph of Figure 6 shows a
comparison between the average times for communication
between remote components related to the three previous
experiments. A better performance when all components
are implemented in the Fractal model can be observed. The
performance of the communication between components us-
ing the remote binding with RMI was always better than
with SOAP - this phenomena was already reported in [9].

5.2 Usability Evaluation
The framework is lightweight and its installation is quick,

simple and does not require many steps, requiring only down-
loading and installing.

InteropFrame is available through file InteropFrame.zip,
which contains a file IFrame.jar besides the required libraries
in the lib folder for its operation. InteropFrame is available
for download with its manual of installation and use in http:

//computacao.ufs.br/pagina/interopframe-9682.html.
Installing InteropFrame is simple. To use the framework

is necessary to extract the contents of InteropFrame.zip in
the root folder of the system developed in some supported
component model (OpenCOM or Fractal). To configure In-
teropFrame for the use, the files from the lib folder and

the file IFrame.jar must be added to the Build Path of the
project.

To evaluate the ease of use of the distributed framework
and the developer effort in coding for interconnecting dis-
tributed heterogeneous components in the proposed scenario,
it was examined the Source Codes 1 and 2 that demonstrate
the operation of InteropFrame.

Source Code 1: Execution File TestServerFrac-
tal.java at server side�

1 package comanche.fractal;
2 public class TestServerFractal {
3 public static void main(String [] args) {
4 // Fractal Server Runtime
5 ...
6 // InteropFrame Server Side Runtime
7 new DefaultServerRMI ();
8 new InteropFrame(analyzerComponent);
9 }

10 }
� �
The effort expended in terms of the number of source in-

structions (correct code lines), without errors, to integrate
the generated proxy and skeleton to their respective peers
in the proposed scenario (Comanche Web Server with dis-
tributed components) is small, since 6 lines are spent for the
execution of the implemented solution using the distributed
framework (considering lines 7 and 8 at server side, and lines
7, 8, 9 and 10 at client side).

Source Code 2: Execution File TestClientOpen-
COM.java at client side�

1 package comanche.opencom;
2 public class TestClientOpenCOM {
3 public static void main(String [] args) {
4 // OpenCOM Client Runtime
5 ...
6 // InteropFrame Client Side Runtime
7 IFrame iFrame = new InteropFrame ();
8 iFrame.setParameters("comanche.opencom.

Receiver", "comanche.opencom.IAnalyzer"
, "OpenCOM", "comanche.fractal.Analyzer
", "comanche.fractal.IAnalyzer", "
Fractal");

9 iFrame.setParametersBinding("RMI");
10 iFrame.remoteBinding(opencomRuntime);
11 // Execution of Client Components
12 ...
13 }
14 }
� �

It could be observed that the process of automatic gener-
ation of proxies to interconnect the OpenCOM component
Receiver to the Fractal component Analyzer in the proposed
evaluation scenario was simplified through the automatic
mechanisms for interoperability provided by the proposed
framework. This level of automation allows developers to
reduce coding time and effort to promote the interconnec-
tion of the heterogeneous distributed components.

5.3 Extensibility Evaluation
InteropFrame allows the extension to new component mod-

els through the development of new plugins. The developer

that needs to extend InteropFrame needs to know in de-
tails the operation of the desired component model, besides
following some standards established in the creation of the
InteropFrame framework, like the tool to generate code from
templates (Apache Velocity [1]) and other technologies used.

Support for extensibility is done natively in the framework
architecture, enabling new component models (e.g. EJB,
OSGi) and new types of bindings (e.g. RESTful Web Ser-
vices , XML-RPC) to be supported by it through the de-
velopment of new plugins. It is possible to observe that the
extension or modification of any InteropFrame functional-
ity is a task that requires knowledge of the implementation
architecture and technologies used.

6. CONCLUSION
Despite the evolution of middleware technologies with the

adoption of component models, it appears that the area of
distributed systems presents several barriers for the interop-
erability between them, and the heterogeneity of middleware
platforms is a challenge for distributed programming based
on components from different models.

Developing software systems for distributed environments
that combine different component models is a difficult task.
The problem of interoperability between heterogeneous plat-
forms is very complex because it involves dealing with issues
related to the differences in distribution models (e.g. a plat-
form can be Object Oriented and another can be a Mes-
sage Oriented one), session protocols (e.g. a Request-Reply
protocol or a General Inter-ORB Protocol), diversity of ser-
vices, among others. In this scenario, the main contribution
of this paper is the proposal of the InteropFrame framework,
which has as differential its plugin architecture for compo-
nent models and an approach based on the generation of
proxies to promote interoperability between different models
of distributed components. Also, InteropFrame’s extensible
architecture gives support to other component models and
other types of bindings through the development of plugins.

The implemented distributed framework may serve as a
basis for further and broader research on interoperability be-
tween component models, as well as to develop other mech-
anisms for interoperability between different platforms.

For future work, some opportunities can be identified, in-
cluding: (i) the extension of the InteropFrame to support
components developed in different languages (the current
solution is for Java components), (ii) the development of
plugins for other component models (such as EJB and OSGi)
and plugins for other types of bindings (such as RESTFul
Web Services and XML-RPC), (iii) the migration of the
InteropFrame platform to OSGi and the evaluation of pos-
sible performance loss of the framework caused by the use
of OSGi, and (iv) to design and implement a version of In-
teropFrame for devices with limited processing power, lim-
ited computing resources and equipped with wireless com-
munication, such as mobile phones.

7. ACKNOWLEDGEMENTS
The authors thank CAPES and COPES/UFS for the fi-

nancial support to the development of this research.

8. REFERENCES
[1] Apache. Velocity Template Engine (Velocity).

[2] R. Armstrong, G. Kumfert, L. C. McInnes, S. Parker,
B. Allan, M. Sottile, T. Epperly, and T. Dahlgren.
The CCA component model for high-performance
scientific computing. Concurrency and Computation:
Practice and Experience, 18(2):215–229, 2006.

[3] G. Blair, M. Paolucci, P. Grace, and N. Georgantas.
Interoperability in Complex Distributed Systems. In
M. Bernardo and V. Issarny, editors, Formal Methods
for Eternal Networked Software Systems, volume 6659
of Lecture Notes in Computer Science, pages 1–26.
Springer Berlin / Heidelberg, 2011.
10.1007/978-3-642-21455-4 1.

[4] Y.-D. Bromberg, P. Grace, L. R̈ı£¡veill̈ı£¡re, and G. S.
Blair. Bridging the interoperability gap: Overcoming
combined application and middleware heterogeneity.
In F. Kon and A.-M. Kermarrec, editors, Middleware
2011, volume 7049 of Lecture Notes in Computer
Science, pages 390–409. Springer Berlin Heidelberg,
2011.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The FRACTAL component model
and its support in Java. Software: Practice and
Experience, 36(11-12):1257–1284, 2006.

[6] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair.
DISTRIBUTED SYSTEMS: Concepts and Design.
Addison-Wesley, Boston, 5 ed. edition, 2011.

[7] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia,
K. Lee, J. Ueyama, and T. Sivaharan. A generic
component model for building systems software. ACM
Trans. Comput. Syst., 26(1):1:1–1:42, Mar. 2008.

[8] I. Crnkovic, J. Stafford, and C. Szyperski. Software
Components beyond Programming: From Routines to
Services. IEEE Software, 28:22–26, 2011.

[9] C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle.
Benchmarking the round-trip latency of various
java-based middleware platforms. Stud. Inform. Univ.,
4(1):7–24, 2005.

[10] L. DeMichiel and M. Keith. JSR 220: Enterprise
JavaBeans. Sun Microsystems, Santa Clara, 3.0
edition, 2007.

[11] P. Inverardi, V. Issarny, and R. Spalazzese. A theory
of mediators for eternal connectors. In T. Margaria
and B. Steffen, editors, Leveraging Applications of
Formal Methods, Verification, and Validation, volume
6416 of Lecture Notes in Computer Science, pages
236–250. Springer Berlin Heidelberg, 2010.

[12] R. Johnson, J. Hoeller, A. Arendsen, C. Sampaleanu,
R. Harrop, T. Risberg, D. Davison, D. Kopylenko,
M. Pollack, T. Templier, E. Vervaet, P. Tung, B. Hale,
A. Colyer, J. Lewis, C. Leau, M. Fisher, S. Brannen,
R. Laddad, and A. Poutsma. The Spring Framework -
Reference Documentation, 2.5.6 edition. 2008.

[13] M. Malawski, M. Bubak, F. Baude, D. Caromel,
L. Henrio, and M. Morel. Interoperability of Grid
Component Models: GCM and CCA case study. In
T. Priol and M. Vanneschi, editors, Towards Next
Generation Grids, pages 95–105. Springer US, 2007.

[14] OASIS. Service component architecture (SCA)
assembly model specification. OASIS Open, 1.1
edition, 2011.

[15] J. Oberleitner, T. Gschwind, and M. Jazayeri. The
Vienna Component Framework enabling composition

across component models. In Proceedings of the 25th
International Conference on Software Engineering,
ICSE ’03, pages 25–35, Washington, DC, USA, 2003.
IEEE Computer Society.

[16] OMG. OMG CORBA component model (CCM)
specification. OMG, Needham, 3.0 edition, 2002.

[17] S. Parker, K. Zhang, K. Damevski, and C. Johnson.
Integrating Component-Based Scientific Computing
Software. In P. R. M.A. Heroux and H. Simon, editors,
Parallel Processing for Scientific Computing, pages
271–288. SIAM Press, 2006.

[18] L. L. Peterson and B. S. Davie. Computer Networks:
A Systems Approach, 4rd Edition. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2007.

[19] R. Rouvoy and P. Merle. Leveraging component-based
software engineering with Fraclet. Annals of
Telecommunications, 64:65–79, 2009.
10.1007/s12243-008-0072-z.

[20] B. Ruixian. Distributed computing via rmi and corba.
2000.

[21] L. Seinturier, P. Merle, R. Rouvoy, D. Romero,
V. Schiavoni, and J.-B. Stefani. A component-based
middleware platform for reconfigurable
service-oriented architectures. Software: Practice and
Experience, 42(5):559–583, 2012.

[22] W3C. SOAP Specification, 2012.

[23] D. WINER. XML-RPC Specification (2003), 1999.

[24] K. Zhang, K. Damevski, and S. G. Parker. SCIRun2:
A CCA framework for high performance computing.
In In Proceedings of the 9th International Workshop
on High-Level Parallel Programming Models and
Supportive Environments (HIPS, pages 72–79. IEEE
Press, 2004.

