

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE CAMPUS ARACAJU

DEPARTAMENTO DE DESENVOLVIMENTO DE ENSINO COORDENADORIA DE ENGENHARIA CIVIL CURSO DE BACHARELADO EM ENGENHARIA CIVIL

JOYRE CANIDE ROMÃO COSTA

ANÁLISE DAS PRINCIPAIS ETAPAS DOS PROCEDIMENTOS EXECUTIVOS DA RODOVIA ESTADUAL QUE INTERLIGA A BR-101 AO PRESÍDIO FEMININO EM NOSSA SENHORA DO SOCORRO/SE.

JOYRE CANIDE ROMÃO COSTA

ANÁLISE DAS PRINCIPAIS ETAPAS DOS PROCEDIMENTOS EXECUTIVOS DA RODOVIA ESTADUAL QUE INTERLIGA A BR-101 AO PRESÍDIO FEMININO EM NOSSA SENHORA DO SOCORRO/SE.

Monografia apresentada como requisito parcial à obtenção do título de Bacharel, da Coordenação do Curso de Engenharia Civil, do Instituto Federal de Sergipe – Campus Aracaju.

Orientador: Prof. Dr. José Resende Goes

Ficha catalográfica elaborada pela Bibliotecária Geocelly Oliveira Gambardella / CRB-5 1815, com os dados fornecidos pelo(a) autor(a).

Costa, Joyre Canide Romão.

C837a Análise das principais etapas dos procedimentos executivos da rodovia estadual que interliga a BR-101 ao presídio feminino em Nossa Senhora do Socorro/SE. / Joyre Canide Romão Costa. – Aracaju, 2023.

79 f : il

Orientador: Prof. Dr. José Resende Goes. Monografia (Graduação - Bacharelado em Engenharia Civil) - Instituto Federal de Sergipe, 2023.

 Terraplenagem. 2. Pavimentação. 3. Movimento de terra. I. Goes, José Resende. II. Título.

CDU 625.8

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE CAMPUS ARACAJU

CURSO DE BACHARELADO EM ENGENHARIA CIVIL

TERMO DE APROVAÇÃO

Título da Monografia Nº 245

ANÁLISE DAS PRINCIPAIS ETAPAS DOS PROCEDIMENTOS EXECUTIVOS DA RODOVIA ESTADUAL QUE LIGA A BR -101 AO "PREFEM" EM NOSSA SENHORA DO SOCORRO/SE

JOYRE CANIDE ROMÃO COSTA

Esta monografia foi apresentada às 10 h 01 do dia 10 de 14 verno de 2013 como requisito parcial para a obtenção do título de BACHAREL EM ENGENHARIA CIVIL. O candidato foi arguido pela Banca Examinadora composta pelos professores abaixo assinados.

Após deliberação, a Banca Examinadora considerou o trabalho aprovado.

Prof. M.Sc. Emiliana de Souza Rezende

Guedes

(IFS - Campus Aracaju)

rof. Dr. Tatiana Máximo Almeida

Albuquerque

(IFS - Campus Aracaju)

Prof. Dr. José Resende Góes

(IFS - Campus Aracaju)

Orientador

Prof. Dr. Pablo Gleydson de Sousa

(IFS – Campus Aracaju) Coordenador da COEC

Dedico este trabalho a toda minha família que sempre esteve comigo nos momentos mais difíceis da minha vida, em especial ao meu querido Pai que não se encontra mais presente neste mundo terreno. O senhor sempre esteve vivo em minha memória!

AGRADECIMENTOS

É impossivel expressar em palavras o quão grato sou por ter Jesus em minha vida, o quanto ele tem me ajudado desde os meus primeiros passos dentro da Instituição em que hoje completo mais um ciclo. Os obstáculos que encontrei não foram suficientes para me convencer que deveria parar, no fundo sempre sentia que poderia ir mais além, e fui. Ele tem sido meu refúgio em todos os momentos de angustia, Jesus é minha vida.

Meus pais foram peças fundamentais em toda a minha formação, desde o esforço para poder pagar um escola com qualidade até o meu sustento durante minha graduação. Meu pai em especial me ensinou que nada é impossivel, não é fácil completar esse ciclo que ele tanto esperava sem sua presença, a vida não é nada fácil e de repente o senhor partiu, deixando uma saudade sem tamanho. O senhor foi, é, e sempre será minha fonte de inspiração.

A minha companheira de todos os momentos, uma mulher incrível, gostaria de expressar alguns dos sentimentos que recebi durante toda nossa jornada do relacionamento, nos momentos mais difíceis você sempre esteve comigo, sua presença foi de fundamental importância para que esse ciclo fosse tomando fim. Ao meu filho, João Neto, só tenho a agradecer pela sua existência, você é meu fruto de inspiração.

Durante todo meu percurso na Instituição, encontrei diversos professores que me ajudaram de alguma forma, em especial gostaria de agradecer ao Prof Rodolfo, um exemplo em sala de aula, foi com sua ajuda que consegui me encontrar no curso, o senhor é um exemplo a ser seguido, que Deus te abençoe grandemente. Ao Prof Resende, faltam palavras, soa como cichê mas não é, durante todos esses meses o senhor sempre esteve ao meu lado, mesmo nos momentos em que pensei em desistir, todo durão mas no fundo preocupado com a situação, ao senhor meu muito obrigado. Meus eternos agradecimentos a todos os professores do Instituto Federal de Sergipe que contruibuiram com minha formação durante todo esse percurso.

Por último, mas não menos importante, agradeço por todos os membros da minha familia, aos meu amigos que torceram por esse momento e a todos o professores que me auxiliaram nessa caminhada. Que Deus abençõe a todos vocês.

RESUMO

COSTA, Joyre Canide Romão. Análise das Principais Etapas dos Procedimentos Executivos da Rodovia que Interliga a BR-101 ao Presídio Feminino em Nossa Senhora do Socorro, 79 folhas. Monografia (Bacharelado em Engenharia Civil) – Instituto Federal de Educação, Ciência e Tecnologia de Sergipe – Campus Aracaju, 2023.

Obras de terraplenagem se baseiam no processo do movimento de terra, remoção do solo com características desfavoráveis para a construção ou o reforço desse solo, visando evitar quaisquer patologias futuras. São de suma importância para as obras de construção civil, pois constituem a base da maioria das obras, tendo como propósito evitar problemas como erosão e deslizamento de terra. Além disso, elas são de suma importância para as obras de engenharia, sendo essenciais para processos como construção de estradas, abertura de locais para extração de minério também fundação para construção de edifícios. favorecendo. consequentemente, o desenvolvimento econômico do local no qual serão implementadas. O estudo de caso desta monografia se baseia em uma obra de pavimentação asfáltica e movimento de terra localizada no município de Nossa Senhora de Socorro, licitada pelo governo estadual de Sergipe. O objetivo deste trabalho foi fazer uma análise direta das técnicas utilizadas nas obras de terraplanagem e comparando-as com as normas técnicas vigente, visando uma melhor execução e consequentemente evitando o surgimento de patologias, além de permitir que o pavimento tenha uma melhor funcionalidade durante todo seu uso. Salienta-se que durante toda a fase de execução, foi feito um rigoroso controle tecnológico de todos os materiais empregados, envolvendo todas as etapas de movimentação de terra, desde a regularização do subleito, sub-base, base, drenagem e sinalização horizontal e vertical. O subleito precisou de um controle mais rigoroso de execução a fim de evitar o surgimento de ondulações nas camadas seguintes. Por fim, a alternativa mais viável foi executar o subleito, fazendo a homogeneização da camada e compactando-a.

Palavras-chave: Terraplenagem. Pavimentação. Movimento de terra.

ABSTRACT

COSTA, Joyre Canide Romão. Analysis of Main Stages of the Executive Procedures of the Highway that Connects BR-101 to the Women's a Prison in Nossa Senhora do Socorro, 79 leaves. Monograph (Bachelor of Civil Engineering) – Federal Institute of Education, Science and Technology of Sergipe – Campus Aracaju, 2023.

Earthworks are based on the process of earth movement, removal of soil with unfavorable characteristics for the construction or reinforcement of this soil, in order to avoid any future pathologies. They are of paramount importance for civil construction works, as they form the basis of most works, with the purpose of avoiding problems such as erosion and landslides. In addition, they are of paramount importance for engineering works, being essential for processes such as road construction, opening sites for ore extraction and also in the foundation for construction of buildings, thus favoring the economic development of the place where they are located. will be implemented. The case study of this monograph is based on an asphalt paving and earthmoving work located in the municipality of Nossa Senhora de Socorro, tendered by the state government of Sergipe. The objective of this work was to make a direct analysis of the techniques used in earthworks and comparing them with the current technical standards, aiming at a better execution and consequently avoiding the appearance of pathologies, in addition to allowing the pavement to have a better functionality throughout the entire period. its use. It should be noted that throughout the execution phase, strict technological control was carried out on all materials used, involving all stages of earth movement, from leveling the subgrade, sub-base, base, drainage and horizontal and vertical signaling. subgrade needed stricter execution control in order to avoid the appearance of ripples in the following layers. Finally, the most viable alternative was to perform the subgrade, making the layer homogenized and compacting it.

Keywords: Earthmoving. Paving. Earth movement.

LISTAS DE SIGLAS E ACRÔNIMOS

LISTA DE SIGLAS

ABNT Associação Brasileira de Normas Técnicas

AASHTO American Association of State Highway and Transportation Officials

CBR California Bearing Ratio

CBUQ Concreto Betuminoso Usinado à Quente

CNT Confederação Nacional do Transporte

DER Departamento Estadual de Infraestrutura

DNER Departamento Nacional de Estradas de Rodagem

ISC Índice de Suporte California

LC Limite de Contração

LL Limite de Liquidez

LP Limite de Plasticidade

TP Tomada de Preço

LISTA DE ACRÔNIMOS

CTENG Corpo Tecnico de Engenharia

DNIT Departamento Nacional de Infraestrutura de Transportes

EMBRAPA Empresa Brasileira de Pesquisa Agropecuária

PREFEM Presídio Feminino

SEDURBS Secretaria de Estado do Desenvolvimento Urbano e Sustentabilidade

LISTA DE FIGURAS

Figura 1 – Solo Arenoso	18
Figura 2 – Solo Argiloso	19
Figura 3 – Solo Siltoso	21
Figura 4 – Dimensões e Pesos dos Soquetes Utilizados na Compactação	24
Figura 5 – Processo de Frasco	25
Figura 6 – Estados Característicos dos Solos Finos e os Limites de Atteberg	26
Figura 7 – Ensaio de Suporte California	28
Figura 8 – Pavimento Flexível	31
Figura 9 – Pavimento Flexível	31
Figura 10 – Pavimento Rígido	32
Figura 11 – Pavimento Rígido	33
Figura 12 – Estrutura do Pavimento	34
Figura 13 – Calçamento	36
Figura 14 – Calçamento em Paralelepipedo	37
Figura 15 – Piso em Concreto	39
Figura 16 – Pavimento Asfáltico	40
Figura 17 – Aplicação de CBUQ	41
Figura 18 – Seção 'Tipo' – Movimento de Terra	47
Figura 19 – Poço de visita com BSTC	48
Figura 20 – Dreno Sub-Superficial	49
Figura 21 – Dissipador de Energia	49
Figura 22 – Classificação AASHTO	52
Figura 23 – Caminhão Basculante	56
Figura 24 – Motoniveladora	56
Figura 25 – Trator de Grade	57
Figura 26 – Caminhão Pipa	57
Figura 27 – Limpeza Manual da Via	58
Figura 28 – Escavação de vala	59
Figura 29 – Compactação	59

Figura 30 – Rejuntamento	
Figura 31 – Aterro	
Figura 32 – Imprimação/Espargidor	
Figura 33 – Imprimação	
Figura 34 – Emulsão	61
Figura 35 – CBUQ	61
Figura 36 – Revestimento	61
Figura 37 – Obra concluída	
LISTA DE QUADROS E GRÁFICOS	
Quadro 1 - Termos aplicáveis a camadas de revestimento asfáltico.	35
Gráfico 1 - Classificação Índices de Consistências.	
Gráfico 2 - Classificação Índices de Consistências.	53

SUMÁRIO

1 INTRODUÇÃO	13
1.1 OBJETIVOS	14
1.1.1 Geral	14
1.1.2 Específico	14
1.2 ESTRUTURA DO TRABALHO	14
2 FUNDAMENTAÇÃO TEÓRICA	16
2.1 SOLOS	16
2.1.1 Definição	16
2.1.2 Principais tipos de solos usados na terraplenagem	17
2.1.2.1 Arenoso	17
2.1.2.2 Argiloso	19
2.1.2.3 Siltoso	20
2.1.3 Principais tipos de ensaios usados na terraplenagem	22
2.1.3.1 Compactação	22
2.1.3.2 Frasco de Areia	24
2.1.3.3 Deteminação dos Limites de Liquidez, Plasticidade e Contração	25
2.1.3.4 Índice de Suporte California	27
2.2 TIPOS DE ESTRADAS E RODOVIAS	28
2.3 PAVIMENTAÇÃO	29
2.3.1 Definição	29
2.3.2 Classificação dos pavimentos	30
2.4 ESTRUTURA DOS PAVIMENTOS	33
2.4.1 Subleito	33
2.4.2 Sub-base	33
2.4.3 Base	34
2.5 PRINCIPAIS TIPOS DE REVESTIMENTOS	34
2.5.1 Definição	34
2.5.2 Piso intertravado	35
2.5.3 Em concreto	38
2.5.4 À base de asfalto	39

2.5.5 Em Concreto Betuminoso Usinado a Quente (CBUQ)	
2.6 OBRAS COMPLEMENTARES	42
2.6.1 Iluminação Pública	42
2.6.2 Sinalização Horizontal e Vertical	42
2.6.3 Drenagem	43
3 METODOLOGIA	44
3.1 ELEMENTOS TÉCNICOS LICITATÓRIOS ATÉ A CONTRATAÇÃO DA OBRA	44
3.2 EXECUÇÃO DO MOVIMENTO DE TERRA, SUB-BASE E BASE	46
3.3 EXECUÇÃO DA DRENAGEM E DA PAVIMENTAÇÃO ASFÁLTICA	48
4 RESULTADOS E DISCUSSÕES	50
4.1 ELEMENTOS TÉCNICOS LICITATÓRIOS ATÉ A CONTRATAÇÃO DA OBRA	50
4.2 EXECUÇÃO DO MOVIMENTO DE TERRA, SUB-BASE E BASE	51
4.3 EXECUÇÃO DA DRENAGEM E DA PAVIMENTAÇÃO ASFÁLTICA	58
5 CONCLUSÃO	63
6 RECOMENDAÇÕES PARA TRABALHOS FUTUROS	64
REFERÊNCIAS	65
ANEXO 1 - CLASSIFICAÇÃO LICITAÇÃO	73
ANEXO 2 – ENSAIO DE SUBLEITO	74
ANEXO 3 – SEÇÕES TRANSVERSAIS	76
ANEXO 4 – CÁLCULO ESTATÍSTICOS DOS RESULTADOS DO ENSAIOS	77
ANEXO 5 – ANÁLISE GRANULOMÉTRICA	78

1 INTRODUÇÃO

A estrada é uma ligação de dois ou mais pontos, sua principal função é ajudar o escoamento de matérias primas, além de ser o meio comum de transporte de pessoas, sua execução facilita o desenvolvimento econômico e social de onde foi implementada.

Na história da humanidade, as primeiras estradas foram construídas pelos povos egípcios, que perceberam a sua grande importância para facilitar o transporte de blocos de pedras, que seriam utilizados na construção das pirâmides de Quéops (MODERNELL, 1986).

Na história brasileira, Pereira e Lessa (2011) explicam que as primeiras rodovias começaram a surgir em 1920, com as obras comandadas pelo então Governador de São Paulo, Washington Luís, dentro do próprio estado. Porém, a intensificação das construções das rodovias veio a ocorrer através do Presidente Juscelino Kubitschek entre as décadas de 1940 e 1950, em toda a extensão do território brasileiro.

A pavimentação é responsável pela estabilidade, durabilidade, resistência a esforços horizontais, verticais, de rolamento, aceleração e frenagem de uma via, e tem como função receber as cargas impostas pelo tráfego de veículos e distribuí-las entre as camadas que compõem a terraplanagem.

Um estudo divulgado pela Confederação Nacional de Transportes (CNT), de 2018, indica que 61% da matriz rodoviária brasileira corresponde ao transporte de carga e 95% ao transporte de passageiros. Também foi apontada a má qualidade das rodovias analisadas, sendo que 61% de toda a malha pavimentada foi classificada como regular ou péssima. O surgimento de patologias que podem ocasionar acidentes e dificultar a fluidez de todo o transporte rodoviário é causado pela falta de manutenção.

De acordo com uma pesquisa desenvolvida pela CNT (2021) foi constatado que, dos 103.259 km analisados das rodovias federais e estaduais, cerca de 58,2% apresentam problemas, majoritariamente relacionados às condições do pavimento e de toda a sinalização existente. Em relação ao pavimento, 48,3% dos trechos analisados foram classificados como regular, ruim ou péssimo. Já no quesito sinalização, 51,7% das rodovias apresentaram algum tipo de irregularidade. Por fim,

77,9% da extensão avaliada estava com algum tipo de falha relacionada à geometria da via.

O objetivo geral do presente trabalho é analisar as principais etapas dos procedimentos executivos da Rodovia que liga a BR-101 ao PREFEM em Nossa Senhora do Socorro/SE e verificar se estão de acordo com as normas vigentes.

Por fim, a realização do estudo do solo por meio de ensaios e todo o controle tecnológico é de extrema importância, pois assim se consegue conhecer as propriedades e características do material, proporcionando um amplo conhecimento quanto às opções para sua empregabilidade na construção civil.

1.1 OBJETIVOS

1.1.1 **Geral**

Analisar as principais etapas dos procedimentos executivos da Rodovia que interliga a BR-101 ao Presídio Feminino (PREFEM) em Nossa Senhora do Socorro/SE.

1.1.2 Específicos

- a) Apresentar os elementos técnicos licitatórios até a fase de contratação da obra;
- b) Analisar os principais procedimentos das etapas de execução do movimento de terra, da sub-base e da base do pavimento da rodovia;
- c) Analisar os principais procedimentos das etapas de execução da drenagem e da pavimentação asfáltica do pavimento da rodovia

1.2 ESTRUTURA DO TRABALHO

Para atingir os objetivos, o trabalho foi elaborado em cinco capítulos, que são: Introdução, Fundamentação Teórica, Metodologia e Resultados e Discussões.

A introdução ressalta a importância do tema para a discussão acadêmica e também para sociedade, discutindo pontos específicos dos objetivos com intuito de encontrar respostas para uma melhor qualidade de execução das obras de

terraplenagem. O segundo capítulo está fundamentado em diversos artigos e livros que embasam cientificamente o tema exposto, incluindo o início da pavimentação, sua importância, tipos de solos, tipos de revestimentos e controle tecnológico. O terceiro capítulo define toda a metodologia utilizada no trabalho, exploração e apresentação do projeto executivo por parte da empresa executora. No capítulo seguinte, na seção de Resultados e Discussões, explana-se o estudo de caso do tema, apresentando respostas para os pontos citados na metodologia e explicando a importância de se ter um controle tecnológico adequado a fim de evitar o surgimento de patologias a curto e longo prazo. No último capítulo está uma listagem de temas que podem ser abordados depois da leitura dessa monografia.

2 FUNDAMENTAÇÃO TEÓRICA

2.1 SOLOS

2.1.1 Definição

O solo é uma coleção de corpos naturais, que se formam por partes líquidas, sólidas e gasosas, tridimensionais e dinâmicos, constituídos por materiais orgânicos e minerais e que fazem a ocupação de grande parte do manto superficial das extensões continentais do planeta (EMBRAPA, 2006). O solo é um material não consolidado que se deriva de rochas decompostas através da ação de agentes do intemperismo (DNIT, 2006).

Conforme esclarecido por Almeida (2005), solos são corpos naturais formados pela desagregação das rochas ou da sedimentação não consolidada dos seus grãos componentes, podendo conter ou não matéria orgânica em sua formação. Sua classificação pode se dar pela plasticidade, textura, cor, capacidade, consistência, granulometria, friabilidade, cheiro, forma dos grãos ou até mesmo pela apresentação de outros materiais como mica, matéria vegetal, conchas e etc.

É imperativa a necessidade de se explorar e entender as propriedades do solo, como estrutura, consistência, porosidade, coesão, composição, natureza, propriedades físico-químicas e comportamento antes do seu uso. Mediante todas as informações pertinentes à caracterização do solo é possível medir a adequabilidade da sua utilização (SANTOS, 2012).

Um dos elementos que mais ocasionam a diminuição da resistência do solo é a água, visto que ela ocupa parte ou totalidade dos vazios que existem em sua composição. O solo em sua forma natural possui um determinado limite para absorção da água, de forma que nem toda água da chuva consegue percolar nele. Se a intensidade da precipitação for menor que sua capacidade de infiltração, a água poderá percolar no solo (SILVEIRA et al, 1993). Conforme esclarece Santos (2012), o cálculo da quantidade de água infiltrada em uma escavação pode ser considerado um fator de risco. Essa taxa de infiltração de água no solo depende da cobertura vegetal e de teor de matéria orgânica sobre o solo, características físicas do solo, estado da superfície, etc. (MOLINARI e VIEIRA, 2004).

O recalque de uma fundação ocorre quando há uma variação de deformidade do solo, quando ele é submetido a cargas excessivas e diferentes do que foi calculado em projeto. Dessa maneira, ocorre variação volumétrica, ou seja, a eliminação de vazios, expulsando a água e o ar. Logo, é de suma importância realizar todas as verificações dos recalques em obras de terraplanagem, além de se avaliar também a estabilidade do solo, visto que a resistência dele depende da pressão ocasionada pela percolação da água no material (SANTOS, 2012).

2.1.2 Principais tipos de solos usados na terraplenagem

Dentro de todo o contexto ligado a terraplenagem/pavimentação serão expostos os principais tipos de solos utilizados para a execução dos serviços ligados ao objeto de estudo.

2.1.2.1 Arenoso

Os solos arenosos (Figura 1) são os que possuem em sua constituição a predominância da areia diante dos outros materiais, sendo formado de grãos finos, médios e grossos (CAMPOS, 2013). No decorrer de todo o escoamento, a água leva todo o sal mineral e empobrece o solo de nutrientes, favorecendo a secagem da terra e sua deficiência em cálcio. Todo o processo entre grãos de areia é inclusive uma das enormes problemáticas nesse tipo de solo (AGRO, 2021). Além disso, o solo arenoso possui pH ácido, o que esclarece o teor muito baixo de matéria orgânica em sua formação (AGRO, 2021).

Figura 1 - Solo arenoso.

Fonte: Viva decora (2020).

Conforme salientado por Das (2007), os grãos de areia podem ser vistos a olho nu, sendo facilmente separáveis, e caracterizam o solo arenoso pela falta de coesão entre si. Além disso, de acordo com o mesmo autor, a areia é majoritariamente constituída por minerais de quartzo e feldspato, tendo a apresentação de outros grãos minerais com menor incidência.

Como propriedade característica, os solos granulares limpos possuem uma permeabilidade elevada, e passam por uma variação menor quanto à compactação, com teores diferentes de umidade. Dessa maneira, os solos são bem diferentes, com apresentação de grãos finos em sua formação (FERNANDES, 2011).

O solo arenoso apresenta baixa densidade, o que resulta em grande dificuldade para a construção civil. (GALVA MINAS, 2017).

É necessária uma análise aprimorada do impacto da obra nesse tipo de terreno. Nesta situação, é indicado que as fundações sejam profundas, com estacas de aço ou concreto armado, que necessitam ter uma boa resistência, de forma a manter a garantia da segurança das edificações (GALVA MINAS, 2017).

Uma das características mais importantes desse do solo arenoso é a baixa permeabilidade, pois é por conta dessa propriedade que a argila encharca e seca com facilidade. Além disso, essa impermeabilidade faz com que seja um dos materiais que são mais utilizadas na construção de barragens depois de um processo de compactação (FARM, 2022).

Em várias situações os solos granulares podem passar por uma diminuição na sua capacidade de compactação quando a umidade se eleva. Isso pode ocorrer em decorrência das tensões efetivas ligadas à capilaridade, suportando os esforços de compactação e impedindo a acomodação dos grãos (CAMPOS, 2013).

2.1.2.2 Argiloso

Os solos argilosos (Figura 2) são caracterizados pela ocorrência de grãos microscópicos em sua formação, de cor viva e alta impermeabilidade. Essa impermeabilidade torna esse tipo de solo o mais usado para construir barragens de terra pequenas, desde que sejam atendidos os parâmetros de compactação. Em decorrência do tamanho de seus grãos, esse solo é de simples moldagem.

Figura 2 - Solo argiloso.

Fonte: Agropos (2019).

O solo argiloso tem granulometria fina com partículas em formato lamelar, tubular ou alongada, e sua formação mineralógica tem variação quanto à quantidade de água que faz o envolvimento desses grãos (DNIT, 2006).

De modo geral, o termo argiloso está ligado às partículas do solo que exibem um diâmetro menor que 2µm (micrometros), bem menor que um grão de areia, e não visível a olho nu (IVAN, 2022). Em sua composição, estão minerais de diferentes tipos, como silicatos lamelares de magnésio e de alumínio (filossilicatos), óxidos metálicos, feldspato, carbonatos, quartzo e até mesmo matéria orgânica (LUNA; SCHCHARDT, 1999).

O solo argiloso é o que mais se destaca na terraplanagem, pois tem uma impermeabilidade muito alta e pode ser facilmente moldado com água, além de apresentar dificuldade de desagregação (BARBOSA, 2019).

Em decorrência da sua composição, esse tipo de solo possui características bastante específicas (LAFAYETTE, 2011), tais como:

- a) Maior resistência à erosão;
- b) Maior profundidade;
- c) Expressivas quantidades de óxidos de alumínio e ferro;
- d) Formação de barro plástico e viscoso quando úmido;
- e) Alto grau de compactação;
- f) Maior retenção de água.

O solo argiloso é muito comum no Brasil, e é visto como um solo melhor para construção, pois possui uma melhor densidade e se aglutina facilmente, sendo assim muito resistente quando bem compactado, viabilizando sua utilização em fundações rasas (PINHEIRO, 2020).

2.1.2.3 Siltoso

Conforme explicado por Campos (2013), o Silte é um tipo de solo de características intermediárias entre a areia e a argila. Por ter a finura da argila, o silte se apresenta como um pó. Contudo, não apresenta plasticidade aparente quando se mistura à água e nem possui propriedades coesivas. Por conta disso, as estradas que são feitas com materiais siltosos (Figura 3) exibem muita poeira em climas mais secos, e barro em épocas de chuva.

Figura 3 - Solo Siltoso.

Fonte: Viva decora (2019).

O solo siltoso possui pouca coerência e se transforma em lama facilmente em contato com a água, o que dificulta a construção nesses tipos de solo. O silte é uma partícula de solo com diâmetro variável de 0,002 mm e 0,006 mm, formado especialmente por piroxênio, feldspato, biotita anfibólio e etc. Sua principal característica é apresentar nenhuma ou pouquíssima plasticidade, além de baixa resistência quando seco ao ar, formando torrões que quando secos são facilmente desagregáveis pelos dedos (GEOANALISYS, 2020 e EDUCA CIVIL, 2020). Suas propriedades dominantes se devem pela presença de partículas de silte, que conferem textura e compacidade característicos. Embora presente em quase todo território brasileiro, o silte é raramente encontrado em seu estado puro (TIZZO, 2021 e CAMPOS, 2013).

Segundo Medina (2005), o entendimento dos tipos de partículas que existem nos solos nos permite compreender que eles se classificam de acordo com a quantidade que exibem do grão característico. Isto é, solos arenosos têm uma predominância muito maior de areia, os solos argilosos possuem maior quantidade de argila e assim seguem os demais.

2.1.3 Principais tipos de ensaios usados na terraplenagem

Um estudo realizado nos solos é de grande relevância, principalmente quando se refere à utilização para fins de pavimentação, pois proporciona o máximo de conhecimento possível a respeito das características e propriedades, para adequação de um grande conjunto de opções para seu uso em meios diferentes (BUFFON, 2014).

2.1.3.1 Compactação

Segundo Caputo (1975), a compactação do solo se define pelo seu aumento de densidade, reduzindo sua porosidade. Isso ocorre quando o mesmo é submetido a um esforço de compressão, fazendo com que o ar seja expulso, diminuindo os espaços vazios e rearrajando as particulas para que o solo tenha um índice maior de resistência. O processo de compactação do solo pode ser feito de forma mecânica ou manual. Existem diversos fatores para a compactação do solo, dentre eles, estão:

- a) Aumento de sua resistência:
- b) Eliminação de qualquer tipo de recalque;
- c) Aumento de sua estabilidade:
- d) Diminuição de espaços vazios, expulsão de ar;
- e) Redução da quantidade de agua (teor de umidade).

Souza Pinto (2006) reforça que a técnica é utilizada na maioria das obras de infraestrutura, tais como:

- a) Construção de aterros;
- b) Construção de rodovias;
- c) Barragens de terra;
- d) Terraplanagem na construção de edificios.

Ainda de acordo com Souza Pinto (2006), essa técnica foi desenvolvida pelo engenheiro norte americano *Ralph Proctor*, no ano de 1933 ele publicou diversas observações sobre a compactação de aterros. De acordo com suas análises, o tipo de solo, o teor de umidade e o esforço de compactação influenciavam na qualidade da compactação.

$$E = \frac{P.h.N.n}{V} \tag{1}$$

Fonte: Manual de pavimentação DNIT (2006).

Onde:

E = Energia de compactação/unidade de volume;

P = Peso do soquete (Kg);

h = Altura de queda do soquete (cm);

N = Número de golpes por camada;

n = Número de camadas;

V= Volume do solo compactado (cm3).

O ensaio de *Proctor* Normal utiliza-se de um cilindro com 10 cm de diametro, 12,7 cm de altura e volume de 1.000 cm³, a amostra é submetida a 12 golpes com um soquete de massa de 2,5 kg a uma altura de 30,5cm. O modificado utiliza-se de um cilindro com 15,2 cm de diametro, 12,2 cm de altura e volume de 2.000 cm³, a amostra é submetida a 55 golpes com um soquete de massa de 4,5kg a uma altura de 45,7 cm. Na Figura 4 a seguir estão exibidas as dimensões e os pesos dos soquetes usados:

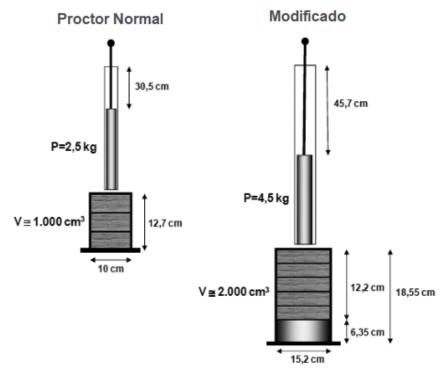


Figura 4 - Dimensões e pesos dos soquetes utilizados na compactação.

Fonte: Helena (2018)

De acordo com Souza Pinto (2006), a energia de compactação pode ser entendida pela quantidade de golpes de um soquete padronizado em uma determinada amostra levada ao laboratório ou até mesmo pelo movimento de um determinado equipamento no campo. O ensaio foi padronizado no Brasil pela normativa NBR 7182/20166 - Ensaio de Compactação.

2.1.3.2 Frasco de areia

De acordo com Moreira (2012), o ensaio do frasco de areia é usado para calcular a massa específica aparente seca do solo e, consequentemente, seu grau de compactação. A normatização do método é feita pela NBR 7185, de 1986, Solo-Determinação da massa específica aparente, "in situ", com uso do frasco de areia. Os materiais necessários para a realização do ensaio são:

- a) Bandeja metálica com um furo de 6" no centro;
- b) Frascos de areia;
- c) Funil com válvula;

- d) Cilindro com volume especificado;
- e) Funil;
- f) Balança pequena e grande.

Na Figura 5 estão apresentados os equipamentos para a execução da determinação do peso específico aparente do solo *in loco*.

Figura 5 - Processo de frasco.

Fonte: Socienge Construções Ltda (2018).

2.1.3.3 Determinação dos limites de liquidez, plasticidade e contração

O limite de liquidez (LL) sinaliza a passagem do estado plástico ao líquido. O ensaio é feito com a ajuda do equipamento de Casagrande que define a consistência de um solo fino. O limite de plasticidade de um solo é definido como o teor de umidade em que este deixa de ser qualificado como plástico e começa a ficar quebradiço. Sendo assim, é o teor de umidade de transição entre os estados plástico e semissólido do solo (BORGES, 2015).

Estes ensaios, também chamados de Limites de *Atterberg*, permitem a determinação dos limites de consistência do solo. A consistência se refere a um estado físico, ou seja, o grau de ligação entre as partículas das substâncias. Quando empregado aos solos coesivos ou finos, a consistência descreve quantidade de água que existe no solo, isto é, o teor de umidade (DAS e SOBHAN, 2014);

Ainda de acordo com Das e Sobhan (2014), os limites são divididos em:

- a) Limite de Liquidez: É a transição do estado plástico para o estado liquido. O ensaio do limite de liquidez é feito através de um equipamento desenvolvido por Arthur Casagrande;
- b) Limite de Plasticidade: É a transição entre o estado semi-sólido e o plástico;
 - c) Limite de Contração: É a transição do estado sólido para o semi-solido.

O Índice de Plasticidade é a diferença entre os limites de liquidez e o de plasticidade do solo. Os quatro estados característicos de consistência dos solos finos são exibidos na Figura 6.

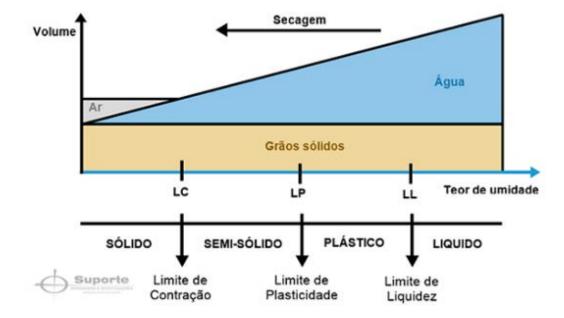


Figura 6 - Estados característicos dos solos finos e os Limites de Atterberg.

Fonte: Helena (2018).

2.1.3.4 Índice de Suporte Califórnia (CBR)

O Índice de Suporte Califórnia (ISC) mais conhecido como CBR (*California Bearing Ratio*) teve seu desenvolvimento nos Estados Unidos, pelo Departamento de Estradas de Rodagens da Califórnia, tendo como intenção realizar a avaliação da resistência dos solos. Também conhecido como ensaio ISC (Índice de Suporte Califórnia), o CBR consiste em um método de avaliação da resistência do solo à penetração de um cilindro padronizado, avaliando suas propriedades mecânicas. O ensaio se divide em três etapas básicas, sendo: compactação do corpo de prova, expansão e resistência à penetração (QUEIROZ e RIGATO, 2016).

A consequência da resistência à penetração é expressa por uma porcentagem, sucedida da relação entre a amostra ensaiada e uma amostra de brita graduada de qualidade elevada. Assim, por exemplo, se um determinado valor de CBR for de 15% significa dizer que a sua resistência à penetração do solo ensaiado é de 15% do valor da brita padronizada.

O ensaio de CBR é um aliado muito relevante para garantir a qualidade e economia no piso industrial. Em relação ao custo total da obra, o custo do ensaio é irrelevante, e demanda um tempo razoável para obtenção de resultados. Ainda assim, tal ensaio é diversas vezes deixado de lado, assumindo-se o risco de entregar um piso de qualidade baixa em razão de sua concretização (DONISETE, 2016).

O valor de resistência é muito importante para construir as pavimentações, especialmente em estradas e rodovias. No Brasil há várias normas que conduzem os ensaios CBR / índice de suporte Califórnia, dentre elas:

- a) DNER-ME162-94 Ensaio de compactação usando amostras trabalhadas;
- b) DNIT 172/2016 Determinação do Índice de Suporte Califórnia usando amostras não trabalhadas Método de ensaio:
- c) ABNT NBR 9895:2016 Solo Índice de suporte Califórnia (ISC) Método de ensaio (QUEIROZ E RIGATO, 2016).

Para que o ensaio CBR seja feito, é preciso utilizar uma prensa (Figura 7). No mercado, atualmente estão disponíveis para compra a prensa manual a automática.

Figura 7 - Ensaio de suporte Califórnia.

Fonte: Directiva Engenharia (2020).

2.2 TIPOS DE ESTRADAS E RODOVIAS

Segundo Albano (2022), no Brasil o sistema de transporte rodoviário, composto por estradas e rodovias, é o mais utilizado por toda a população para fins de locomoção. Quanto à forma de pavimentação, uma estrada pode ser classificada como:

- a) Pavimentada possui algum tipo de revestimento;
- b) Não pavimentada não possui revestimento algum.

Já quanto à administração, as estradas podem ser classificadas em três categorias, de acordo com a esfera política responsável e ponto de origem e destino:

- a) Federal partem da Capital Federal em direção ao extremo do País;
- b) Estadual possuem ponto de origem e destino no mesmo estado;
- c) Municipal são administradas diretamente pelo município, podendo haver variações de acordo com a legislação vigente na cidade.

Quanto ao tipo de pista, de acordo com a mesma pesquisa, existem quatro categorias de acordo com o número de faixas de rolagem:

- a) Pista simples possui apenas uma faixa de cada lado, sendo uma de ida e outra de volta:
 - b) Pista dupla possui duas faixas de rolagem em cada sentido;
 - c) Autoestrada possui mais de duas faixas de rolagem;
- d) Sistema rodoviário caracterizado por duas rodovias próximas umas das outras, com seu traçado basicamente no mesmo sentido.

2.3 PAVIMENTAÇÃO

2.3.1 Definição

Conforme esclarecido por Balbo (2007) a história de desenvolvimento da pavimentação se volta à antiguidade, onde os meios de transporte se baseavam em veículos de tração animal, com rodas de aço e madeira, que demandam superfícies revestidas. Na era moderna, principalmente no começo do século XIX, houve a evolução de muitos automóveis, ferrovias e asfaltos

No Brasil, em 1950, técnicos do Departamento Nacional de Estradas de Rodagem (DNER), realizaram um intercâmbio nos Estados Unidos da América do Norte, com o objetivo de recolher tecnologias e um enorme desenvolvimento nas obras de pavimentação rodoviária (DNIT, 2006).

De acordo com o DNIT (2006), o pavimento é uma estrutura constituída por várias camadas dimensionadas de espessuras finitas, sobre um semi-espaço classificado de maneira teórica como infinito, que é a infra-estrutura ou terreno de fundação, formando a camada chamada de subleito (IPR-2006). Já segundo Souza (1980) o pavimento é visto como uma estrutura desenvolvida por várias camadas, feita com múltiplos materiais, criada e ampliada com a intenção de proporcionar resistência às cargas solicitadas e as ações de intempéries. Outro conceito apresentado é o de Senço (2007), que apresenta o pavimento como sendo uma estrutura efetuada a partir da terraplenagem com a intenção de:

a) Suportar os esforços verticais ocasionados pelo tráfego e fazer sua distribuição;

- b) Proporcionar conforto e segurança suficiente a quem faz o tráfego nas condições de rolamento;
 - c) Resistir aos esforços horizontais.

Conforme descrito por Resende e Souza (2012), no Brasil, as obras de infraestrutura são realizadas de maneira descontinuada, elevando os custos ao governo e consequentemente aos usuários. Por sua vez, os pavimentos acabam sofrendo fortes manifestações patológicas em decorrência do tráfego intenso.

A NBR 7207/82 da ABNT diz que pavimento:

É uma estrutura construída após a terraplenagem, destinada, econômica e simultaneamente, em seu conjunto, a: Resistir e distribuir ao subleito os esforços verticais produzidos; melhorar as condições de rolamento quanto à comodidade e segurança; e resistir aos esforços horizontais que nela atuam, tornado mais durável a superfície de rolamento (NBR, 1982, p. 3).

Cada vez mais a pavimentação das rodovias está exibindo trincas, fissuras, buracos, rachaduras, demandando esforços não dimensionados, que acarretam em custos de manutenção não previstos no planejamento das rodovias, ou até mesmo causando a abertura de crateras. Todos esses problemas acontecem por diversas razões, como a falta de compactação, interpretações erradas dos dados fornecidos pelo teste *Califórnia Bearing Ratio* e a falta de cumprimento de normas técnicas (QUEIROZ e RIGATO, 2016).

2.3.2 Classificação dos pavimentos

Segundo o Departamento Nacional de Infraestrutura de Transportes (DNIT) (2006, p. 95), "[...] pavimento de uma rodovia é a superestrutura constituída por um sistema de camadas de espessuras finitas, assentes sobre um semi-espaço considerado teoricamente como infinito - a infraestrutura ou terreno de fundação, a qual é designada de subleito [...]".

De acordo com Marques (2012), os principais tipos de pavimentos são:

Flexível - é uma estrutura formada por várias camadas, sendo que todas elas quando estão submetidas ao carregamento sofrem deformação elástica, ela é distribuída por todas as camadas inferiores. A facilidade de manutenção é um dos seus principais objetivos. A recuperação é feita apenas no local onde há deformação com o intuito de resistir essas cargas e distribuir os esforços do tráfego,

melhorando as condições da camada de revestimento quanto a sua segurança e conforto e impermeabilizando as camadas inferiores. A pavimentação flexível se for projetada da maneira correta pode suportar adequadamente todos os esforços da via, com vida útil entre cinco e dez anos. O pavimento flexível é ilustrado na Figura 8.

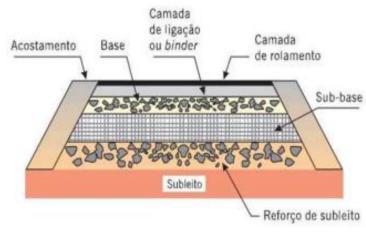


Figura 8 – Pavimento flexível.

Fonte: Bernucci et al., 2008.

Ainda de acordo com o Manual de Pavimentação do DNIT (2006), os pavimentos são classificados em:

a) Flexíveis - podem ser constituídos por uma camada superficial asfáltica, que é o revestimento, por sua vez apoiado em camadas inferiores de base, sub-base e reforço de subleito, constituídos por materiais granulares e passíveis de deformação elástica, conforme ilustrado na figura 9.

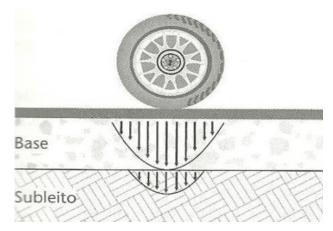


Figura 9 - Pavimento flexível.

Fonte: Balbo, 2007.

- a) Semi-Rígido Ele é constituído por sub-base, base e uma estrutura denominada de 'base cimentada' e logo na camada superior há o revestimento asfáltico. Também é usado aglutinante com propriedades cimentícias, como por exemplo, a própria camada de solo cimento e por fim revestida por uma camada asfáltica. O pavimento semi-rígido apresenta uma deformabilidade intermediária, maior que o rígido e menor que o flexível.
- b) Rígido Seu revestimento tem uma elevada rigidez se comparado com as camadas inferiores, e sua espessura fixa em consequência da resistência à flexão das placas. Como resultado, é possível absorver praticamente todas as tensões provenientes do carregamento aplicado. Esse tipo de pavimento é conhecido por sua constituição em placas de concreto de cimento Portland, e é ilustrado na Figura 10.

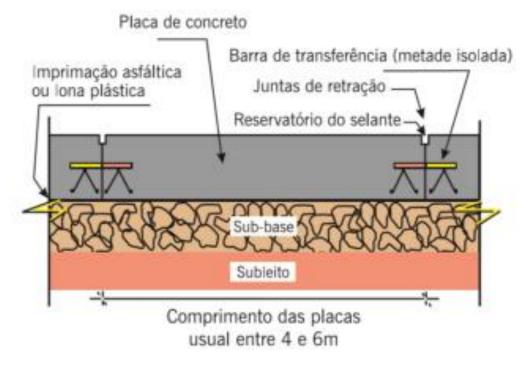


Figura 10 – Pavimento rígido.

Fonte: Bernucci et al., 2008.

De acordo com Bernucci *et al.* (2008), os pavimentos rígidos (Figura 11) são todos aqueles construídos por placas de concreto, de elevada rigidez em relação às camadas que estão embaixo do pavimento. Dessa maneira, todas as tensões são

distribuídas de maneira uniforme, fazendo com que haja menos deformação do pavimento.

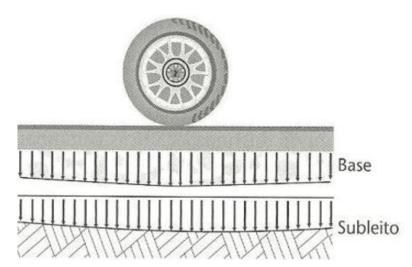


Figura 11 – Pavimento rígido.

Fonte: Balbo, 2007.

2.4 ESTRUTURA DOS PAVIMENTOS

2.4.1 Subleito

A primeira camada dos pavimentos é chamada de subleito, que é o terreno natural do local, camada final da terraplenagem. Segundo o DNIT 137/2010, o subleito deve ser regularizado com o próprio solo, com expansão menor ou igual a 2%, e com índice de suporte Califórnia (CBR) e compactação determinada pelas normas do DNER 49/94 e DNER 164/2013.

Já o reforço do subleito é constituído de um solo ou mistura de solos existentes, de qualidade superior à do subleito. Ele é a camada inferior a sub-base deve ser devidamente compactado e regularizado.

2.4.2 **Sub-base**

De acordo com a norma do DNIT 139/2010, sub-base é definida como a camada de pavimentação que é executada logo após a regularização do reforço do subleito ou do próprio subleito natural, sempre seguindo o controle tecnológico, o solo precisa ser devidamente compactado e regularizado (DNIT 139/2010).

2.4.3 Base

De acordo com a CNT (2017) a base é a camada situada abaixo da camada de revestimento asfáltico, responsável por resistir aos esforços verticais oriundos dos veículos, distribuindo-os adequadamente à camada subjacente, executada sobre a sub-base, subleito ou reforço do subleito, devidamente regularizado e compactado. A base é feita de materiais como os solos, produtos de britagem ou a mistura de ambos, e é a camada sobre a qual construirá o revestimento. Por último, vem o revestimento Figura 12.

Revestimento

Base

Sub-base

Reforço do subleito

Subleito

Figura 12 - Estrutura do pavimento

Fonte: Bernucci, et al (2008).

2.5 PRINCIPAIS TIPOS DE REVESTIMENTO

2.5.1 Definição

O revestimento é a camada que é destinada a receber de forma direta a carga de veículos, sem passar por grandes deformações plásticas ou elásticas, degradações de seus componentes ou perdas de compactação. Para isso, necessita ter em sua formação materiais bem arranjados que atendam a essas condições (BALBO, 2007). Em sua formação, há um conjunto de agregados minerais, com dimensões variadas, e com ligantes asfálticos. Essa estrutura, quando organizada de maneira adequada, processa e garante a estrutura impermeável, flexível, estável,

durável, resistente a derrapagem, resistente a fadiga e ao trincamento térmico, em conformidade com o clima e o tráfego previsto para o local (BERNUCCI et al., 2006).

Segundo Senço (2007), o revestimento é uma camada impermeável, que acaba recebendo diretamente a ação do tráfego e precisa garantir segurança e conforto, além de apresentar resistência ao desgaste. De acordo com Balbo (2007) as diferenças entre essas camadas de revestimento asfáltico estão apresentadas no Quadro 1.

Quadro 1 - Termos aplicáveis a camadas de revestimento asfáltico.

Designação do revestimento	Definição	Associações
Camada de	Camada superficial do pavimento, diretamente em	Capa de
rolamento	contato com as cargas e ações ambientais	rolamento
Camada de ligação	Camada intermediária entre a camada de rolamento	Binder
	e a base do pavimento	Diridei
Camada de nivelamento	Primeira camada de mistura asfáltica com função de	
	corrigir os desníveis em pista e nivelar o perfil do	Reperfilagem
	greide para execução da nova camada de rolamento	
Camada de reforço	Nova camada de rolamento, após anos de uso do	
	pavimento existente, executada por razões	"Recape"
	estruturais e funcionais	

Fonte: Balbo (2007).

2.5.2 Piso intertravado

O piso intertravado (Figura 13), surgiu há milhares de anos na Mesopotâmia, durante o império Romano, quando era usado para fins de pavimentação. No Egito, as pedras que o compõem eram usadas nas esculturas das estátuas e também em toda a pavimentação das ruas, contribuindo assim desenvolvimento local, viabilizando a locomoção, transporte de cargas e pessoas, e facilitando todo o comércio. A utilização das peças pré-moldadas de concreto para execução de pavimentações evolui muito nos últimos anos (MEDEIROS, 1993)

A NBR 15953 (ABNT, 2011) descreve peças pré-moldadas em concreto como parte fundamental da execução dos pisos intertravados, e não faz comparações entre os tipos de juntas (ABNT, 2011).

Figura 13 - Calçamento.

Fonte: Prefeitura Municipal de Caxambu

O piso intertravado caracteriza-se por peças em concreto que colocadas sob uma base já executada, conhecida como colchão de areia, com espessura variável a depender do local e função que o pavimento vai ter. Ele é tensionado entre si para que não haja deslocamentos; as juntas também passam a serem preenchidas com areia para garantir uniformidade. Os blocos utilizados na construção do piso intertravado também são conhecidos por *Pavers e Paviess*, podendo ser préfabricados e maciços que permitem fazer a pavimentação de toda a superfície. Com o rápido avanço do uso dos blocos em concreto, vem crescendo o número de fabricantes desse material que utilizam de equipamentos de primeira linha, aumentando o controle tecnológico do produto final (CORRÊA, 2013).

O piso intertravado com blocos de concreto se destaca pela praticidade na sua execução e sua liberação para o tráfego de pessoas/transporte pode ser imediata. Conforme estudos conduzidos por Junior (2007), a seguir estão listadas algumas das propriedades dos blocos de concreto:

- a) Apresentam menor absorção da luz solar, evitando o desconforto da elevação exagerada da temperatura ambiente;
 - b) Podem ter, simultaneamente, capacidade estrutural e valor paisagístico;
- c) Permitem fácil reparação quando corre recalque no subleito que comprometa a capacidade estrutural do pavimento;
- d) Possibilitam fácil acesso a serviços subterrâneos, e o reparo não deixa marcas visíveis;
 - e) Os blocos podem ser reutilizados;
 - f) Não necessita de mão de obra especializada;
 - g) Os materiais são de fácil execução e chegam prontos na obra;
 - h) Liberação imediata do tráfego.

O paralelepípedo (Figura 14) é um tipo de pavimento intertravado muito utilizado no Brasil. Segundo o DNIT (2006), para esse tipo de pavimento, os blocos de paralelepípedo são assentados sobre um colchão de areia, e por último é feito um rejunte nas juntas. As camadas inferiores do pavimento precisam ser de qualidade e apresentarem uma compactação mínima, caso contrário a obra poderá apresentar algumas patologias que vão prejudicar todo o fluxo da via. De acordo com Souza (2015) os principais problemas enfrentados pela falta de controle de todo material empregado durante a execução do pavimento, as patologias mais comuns nesse tipo de pavimento são: ondulamentos, afundamentos e buracos.

Figura 14 - Calçamento em paralelepípedo

Fonte: Prefeitura Municipal de Capim Grosso.

2.5.3 Em concreto

O concreto é um dos materiais mais utilizados na construção civil. É notório que com o passar dos anos houve uma enorme evolução quanto a qualidade e controle do concreto empregado em diversas áreas da construção. Além disso, diversos pesquisadores buscam por materiais mais alternativos e sustentáveis (BARBOSA, 2006).

O piso de concreto (Figura 15) tem sido bastante procurado por grandes empresas devido à sua durabilidade e resistência, com baixo custo associado a longo prazo. Além disso, o concreto é durável, bastante resistente, de fácil instalação, de fácil limpeza e não necessita de manutenção frequente (BARBOSA, 2006).

Dependendo da variedade de materiais usados em sua confecção, o concreto pode ser de diversos tipos, como convencional, bombeável, leve, pesado, projetado, armado, protegido, autoadensável, de alto desempenho, pré-moldado e pré-fabricado.

O concreto é um material altamente versátil, e pode possibilitar a execução de qualquer elemento estrutural, como por exemplo pisos e lajes, paredes e vigas, vãos, vedações, acabamentos, construções subterrâneas e peças pré-moldadas estruturas pesadas (como gasodutos), isolamento para salas de raio X, hospitais e usinas que tenham algum tipo de radiação, encostas para evitar deslizamentos, túneis, etc. É importante ressaltar que a depender de como for utilizado, pode oferecer um comportamento frágil, mas se for combinado ao aço, pode ter sua resistência aumentada (NEVILLE, 1997).

Figura 15 - Piso em concreto

Fonte: Engregan Pisos

2.5.4 À base de asfalto

Os primeiros relatos de uso do asfalto datam de 3.000 A.C., em situações onde esse material era usado para tapar buracos e fissuras em reservatórios. Com o passar dos anos, sua produção foi sendo aprimorada, e novos tipos de asfalto chegaram ao mercado. Houve o surgimento do piche, por exemplo, que é um material asfáltico muito usado na construção de rodovias e obras de revestimento, agindo como impermeabilizante de pavimentos. A partir de 1909, iniciou-se o uso do asfalto feito à base de petróleo, que até hoje é o mais utilizado nacionalmente. No Brasil, a primeira estrada a ser asfaltada foi a Rio-Petrópolis, em 1928, durante o governo do então presidente Washington Luís.

O asfalto é uma mistura de diversos componentes naturais derivados do petróleo, em que o principal componente é o betume, substância com propriedades ligantes que promove a aglutinação entre os componentes da mistura. Inclusive, em alguns países, como os Estados Unidos, o termo betume e asfalto/cimento asfáltico possuem o mesmo significado.

O pavimento asfáltico contém várias camadas: o revestimento, a base, subbase, reforço do subleito; o revestimento tem seus ligantes e agregados. Há dois tipos de revestimento, um por penetração e outro por mistura. O revestimento por penetração é usado para tratamento superficiais betuminosos e macadames betuminosos. O revestimento denominado "sheet-asphalt", também conhecido como ou lençol asfáltico, em português, é um dos tipos mais antigos de revestimento betuminoso, perdendo somente para os revestimentos europeus (LEITE, 2018).

No Brasil o revestimento mais usado é o revestimento pré-misturado a quente, e a mistura asfáltica mais usada é o concreto asfáltico (Figura 16) ou concreto betuminoso usinado a quente, de graduação densa, aquecido de acordo com a viscosidade desejada.

Figura 16 – Pavimento asfáltico

Fonte: Petrobrás (2022)

2.5.5 Em concreto betuminoso usinado a quente (CBUQ)

O CBUQ é uma composição desenvolvida a quente, em uma usina adequada para seu desenvolvimento, é composta por agregado graduado e cimento asfáltico. Depois da incorporação de todos os elementos, o CBUQ (Figura 17) é transportado até o local em que será aplicado, dentro de caminhões apropriados. Ao chegar à obra, o material é transferido para as máquinas onde será espalhado por toda a área

que será pavimentada, espalhado de maneira uniforme, e posteriormente compactado por outra máquina, de forma que todo o pavimento é distribuído igualmente. Em seguida, o revestimento é espalhado e comprimido sob alto aquecimento. Tudo deve ser feito seguindo as normas e instruções, para evitar futuras rachaduras na estrutura asfáltica (BERNUCCI *et al.*, 2008).

Figura 17 - Aplicação de CBUQ

Fonte: Petroenge (2022)

Na composição do CBUQ estão o Cimento Asfáltico, Agregado Graúdo, Agregado Miúdo e Material de Enchimento (filler). O Cimento Asfáltico é desenvolvido por meio da destilação do petróleo, e tem como função juntar os materiais. O agregado pode ser areia, pó de pedra ou os dois juntos na mistura. O Agregado Graúdo é um tipo de brita ou seixo rolado. Em algumas universidades do Brasil foi desenvolvido o asfalto borracho usando-se pneus velhos como matéria-prima (BERNUCCI et al., 2008)

O CBUQ é o revestimento asfáltico mais utilizado nas vias urbanas e rodovias brasileiras. Suas principais vantagens são a transmissão da carga às camadas inferiores, resistência ao atrito e fricção do trânsito, impermeabilização, boa

durabilidade e moderado custo de acordo com a distância da rodovia a ser pavimentada à usina fornecedora do material (BERNUCCI et al., 2008).

2.6 OBRAS COMPLEMENTARES

2.6.1 Iluminação Pública

Um sistema eficiente de iluminação pública ajuda a evitar qualquer tipo de desperdício de energia, e é de fundamental importância para toda a população, pois está diretamente ligado à qualidade de vida de toda a sociedade. Além disso, ao fornecer aos pedestres ou motoristas uma visão clara dos arredores, a iluminação tem relação direta com a segurança, possibilitando a circulação pelas vias públicas sem medo de assaltos ou acidentes. Dessa maneira, a população pode manter a vida noturna da cidade, visitando lojas, bares, restaurantes e espaços de lazer, contribuindo assim com o desenvolvimento social e econômico da região e aumentando a qualidade de vida das pessoas (KOZLOFF et al., 2001).

A Iluminação pública no Brasil representa apenas 3,5% de toda a energia elétrica que é consumida em território nacional. Uma boa parte dessa energia gerada no País acaba sendo direcionada para o consumo expressivo destinado a todos os tipos de iluminação, principalmente a residencial/industrial (KOZLOFF *et al.*, 2001).

2.6.2 Sinalização Horizontal e Vertical

De acordo com o CONTRAN (2007) a sinalização vertical tem como finalidade controlar todo o fluxo através de sinais de comunicação visual, seja por placas ou painéis instalados ao longo de toda a via. Tem como função informar sobre:

- a) As obrigações, limitações, restrições e proibições que regulamentam aquela via;
- b) Educar os transeuntes e motoristas;
- c) Advertir sobre os riscos repentinos, presença de escolas e passagens de pedestres;
 - d) Indicar direções e distâncias.

A sinalização horizontal, diferente da vertical, se constitui pela pintura de linhas e setas sobre o pavimento na linha central ou na lateral da via, com a função de informar sobre:

- a) Limitações, restrições e proibições que regulamentam aquela via;
- b) Advertir ou indicar os usuários da via.

2.6.3 Drenagem

A construção civil relaciona diversos processos que facilitam uma melhor qualidade na entrega do produto final. Existem diversas opções de produtos e serviços disponíveis no mercado, cada um com seus prós e contras em soluções e particularidades. Cabe ao profissional responsável pela obra decidir qual será o melhor método a ser utilizado, embasando-se em conhecimentos prévios técnicos de logística e de viabilidade (TUCCI, 1995).

A drenagem superficial é um termo comumente utilizado quando se fala em instalações destinadas ao escoamento do excesso de água. O método construtivo se caracteriza pela captação e direcionamento das águas captadas nas estradas, evitando o acúmulo excessivo, o que consequentemente irá diminuir qualquer risco de surgimento de patologias (TUCCI, 1995).

De acordo com a norma DNIT 022/2006 - ES, os dissipadores de energia são dispositivos que promovem a diminuição da velocidade de escoamento da água nas entradas ou saídas das canalizações, com o objetivo de diminuir os riscos de erosão nos arredores ou áreas adjacentes da via. Ainda segundo o DNIT, os tubos para drenagem sub-superficial simples fabricados em PEAD (Polietileno de Alta Densidade) são de suma importância para toda a via construída. Eles são instalados nas camadas subjacentes dos pavimentos de cortes ou de aterros, fazendo a captação da água e evitando as tensões, propiciando uma melhor condição da via e diminuindo os riscos de surgimento de patologias.

A falta de drenos facilita a percolação da água nas camadas do pavimento, aumentando o risco de desagregação do material que se encontrava compactado, que ao sofrer a influência da água, perderá sua resistência.

3 METODOLOGIA

O projeto tem como proposta fornecer subsídios técnicos de engenharia em formato de textos com memórias de cálculos, justificativas técnicas, tabelas com parâmetros construtivos, desenhos explicativos e detalhamentos para implantação da via objeto deste trabalho.

O projeto incorpora todos os elementos obtidos em campo, laboratório e escritório com os devidos estudos de tráfego, topográficos, geotécnicos e hidrológicos para a execução dos projetos geométricos, de terraplenagem, pavimentação, drenagem e sinalização vertical/horizontal. Todos eles foram subordinados a metodologia e instruções de serviços para estudos de projetos rodoviários emanadas dos órgãos normativos oficiais como o DER e DNIT.

3.1 ELEMENTOS TÉCNICOS LICITATÓRIOS ATÉ A CONTRATAÇÃO DA OBRA

A Secretaria de Estado do Desenvolvimento Urbano e Sustentabilidade, SEDURBS, publicou em seu site no dia 26/02/2021 uma licitação, com edital: Tomada de Preço (TP) Nº 01/2021. Constitui objeto da presente licitação em estudo a contratação de empresa sob o regime de empreitada por preço unitário para a Execução dos serviços/obras de Pavimentação asfáltica, drenagem, sinalização e iluminação do Acesso à entrada do PREFEM e novo IML em Nossa Senhora do Socorro/SE.

A fim de nomear as empresas que estão envolvidas nos, iremos denominar de:

Empresa A – Executora dos projetos;

Empresa B – Executora dos serviços projetados.

A empresa A foi responsável pela elaboração de todos os projetos complementares e com base neles, o órgão elaborou uma planilha orçamentária. O valor orçado da SEDURBS, para efeito de avaliação da exequibilidade da Proposta de Preços, inclusos os custos indiretos é de R\$ 1.233.841,78 (hum milhão duzentos e trinta três mil oitocentos e quarenta um reais e setenta oito centavos), tendo como referência o mês de junho/2020, valor este que se estabelece como condição para a

desclassificação das propostas aquelas cujo valor global venha a ser superior ao valor orçado.

De acordo com o órgão, os serviços deverão ser executados e concluídos no prazo de 90 (noventa) dias contados a partir da data da ordem de serviço. Seu prazo de vigencia contratual é de 6 (seis) meses, contados depois da sua assinatura.

Os principais elementos técnicos da licitação estão citados abaixo:

- a) Estudos de Tráfego: Ele foi de suma importancia, pois permitiu identificar que tipo de tráfego ocorre naquele local e com isso foi possivel fazer todo o dimensionamento da via;
- b) Estudos Geotécnicos: O estudo foi definido de acordo com as camadas do subleito e a determinação dos níveis de lençois freáticos. As sondagens foram realizadas com auxílio de trados manuais e pá e picareta, com a finalidade de estudar as camadas durante toda a extensão da via a fim de facilitar o dimensionamento da via ao tráfego que será projetado;
- c) Estudos Hidrológicos: O estudo visa caracterizar a região onde será implementada a via, sob os aspectos hidro climatológicos, e a obtenção dos elementos indispensáveis à concepção, disposição e dimensionamento do sistema de drenagem das vias componentes do projeto.

O órgão disponibilizou através do portal, todos os arquivos referentes a licitação, que são:

- a) Planilha Orçamentária;
- b) Planilha Composições;
- c) Planilha de Encargos Sociais Horistas;
- d) Planilha de Encargos Sociais Mensalista;
- e) Planilha de BDI.

A empresa 'B' participou da licitação com valor de R\$ 1.063.259,54 (um milhão sessenta e três mil duzentos e cinquenta e nove reais e cinquenta e quatro centavos) no dia 18/03/2021 com percentual de desconto da proposta licitada pelo órgão de 13,8%. Todas as planilhas complementares da empresa foram elaboradas de acordo com seu regime tributário e seguindo as normas e lei de licitação.

Outras duas empresas estiverem na disputa da licitação, uma com valor de R\$ 1.109.081,83 e a outra com R\$1.196.805,89. O órgão recolheu as planilhas para julgamento. O resultado foi vinculado ao Diario Oficial do estado no dia 29/03/2021, classificando a empresa 'B' como vencedora (Anexo 1), e mencionado sobre o prazo de 5 (cinco) dias úteis para interposição de recurso. Como não houve interposição, no dia 05/04/2021 o resultado foi confirmado.

3.2 EXECUÇÃO DO MOVIMENTO DE TERRA, SUB-BASE E BASE

A empresa 'A' fez todas as análises dos estudos citados acima e com eles elaborou os projetos que vão ser importantes para a execução da obra, que são:

- a) Projeto Geométrico: Seu principal objetivo é gerar elementos panialtimétricos. Seu desenvolvmento foi fundamentado nos elementos obtidos nos estudos geotecnicos e hidrológicos, seguindo as orientações e instruções de serviço DNIT-IS-208-Projeto Geométrico. A via terá 1.009,56 m, com largura de 6,00m, comportando duas faixas de tráfego de 3,00 m, com revestimento de 5,00 cm de CBUQ;
- b) Projeto de Terraplenagem: O projeto foi elaborado de acordo com a instrução de serviço DNIT-IS-209. Os elementos geotécnicos fornceram subsídios para a elaboração desse projeto. Através do projeto de terraplenagem, foram definidos os seguintes serviços: movimento de terra, aterro, corte e detalhes das seções transversais.

De acordo com a análise feita pela equipe da empresa foi feito o rebaixamento dos segmentos que foram indicados pelo projeto para implantação da estrutura do pavimento completo com sub-base e base. Todo material que for escavado será destinado à bota fora na usina de reciclagem, licenciada para o recebimento desse material. O segmento inicial da estrada, que sofrerá rebaixamento para adequar-se às cotas das soleiras das edificações lindeiras, vai ser processado por último para evitar transtorno de acesso à obra.

Esses locais de rebaixamentos devem ser seccionados antes da operação para serem objeto de medição de volumes de terraplenagem e bota fora, marcação de *off-set* com cotas das camadas do pavimento, conforme seções transversais apresentadas no Anexo 3. A construção da camada de sub-base nos locais dos

rebaixos para que posteriormente seja colocado material de base em todo o trecho de forma a não ter problemas de continuidade.

Por questão de praticidade na construção do pavimento projetado, deverá ser utilizado o mesmo solo para execução da camada de sub-base e base, e até na terraplenagem, caso haja necessidade. No trecho do rebaixamento, deve ser executada a escarificação do subleito até a profundidade de 30,00 cm com umedecimento, homogeneização e compactação a 100% do Proctor Normal, para logo após imprimir a passagem do Rolo de pneu, pelo menos três vezes, no teste de carga, antes da construção da camada de Sub-base.

O teste vale para todas as camadas concluídas para posterior execução da camada subsequente. Em seguida deverá ser construída a camada de base em todo o trecho compactação da camada de sub-base, após homogeneização na umidade ótima do solo, repassada pelo ensaio de compactação em laboratório, que deverá ser executado com energia do proctor intermediário. Execução da sub-base será feita com 20cm, base com 35cm e revestimento com 5cm de CBUQ (Figura 25)

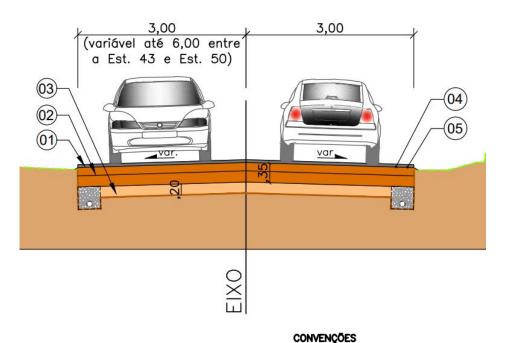


Figura 18 – Seção 'Tipo'- Movimento de terra.

Fonte: CTENG (2021)

SUBLEITO

(04)PINTURA DE LIGAÇÃO RR-2C - 0,5 1/m2

IMPRIMAÇÃO CM-30 - 1,2 I/m²

DRENO SUB-SUPERFICIAL (ver localização no Projeto de Drenagem)

3.3 EXECUÇÃO DA DRENAGEM E DA PAVIMENTAÇÃO ASFÁLTICA.

No incio da obra houve uma reuniao com a equipe técnica afim de descutir o incio da execução da drenagem. Foi decidido que ela deveria ser feita por etapas em meia pista para nao atrapalhar o tráfego de serviço. O projeto para execução de toda parte de drenagem foi disponibilizado pela empresa que elaborou todos os projetos complementares, e neles estão todas as informações prévias. Serão construídos poços de visitas (Figura 19), dissipadores de energia (Figura 20), drenagem sub-superficial (Figura 21) e execução meio fio pré-moldado de concreto para condução da água. A execução de todos os serviços citados acima é de responsabilidade da empresa vencedora da licitação, a fiscalização será feita pelos profissionais da SEDURBS.

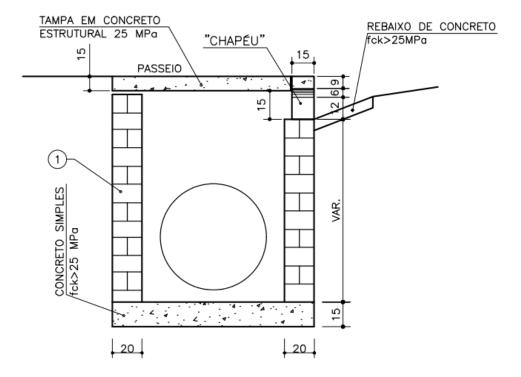
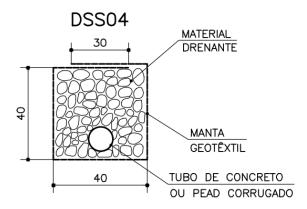



Figura 19 – Poço de visita com BSTC.

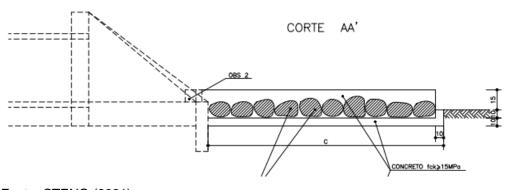

Fonte: CTENG (2021)

Figura 20 - Dreno Sub-Superficial

Fonte: CTENG (2021)

Figura 21 - Dissipador de energia.

Fonte: CTENG (2021)

O projeto de pavimentação foi fundamentado nos estudos de tráfego e geotécnicos, seguindo as orientações da Instrução de Serviço DNIT-IS-211. Foram selecionados os materiais que vão ser empregados na construção das camadas do pavimento, e foi dimensionada a estrutura do pavimento seguindo a concepção do projeto e a homogeneidade do trecho. A camada de revestimento foi executada com 5,00 cm de CBUQ. É importante frizar que antes da sua execução, é preciso fazer a imprimação, parte fundamental na impermeabilização de toda a terraplenagem, e por ultimo a pintura de ligação, que fica entre a imprimação e o revestimento, a fim de garintir uma melhor aderência.

4 RESULTADOS E DISCUSSÕES

A fim de evitar transtornos durante a execução da obra, foi necessário ter uma equipe técnica eficiente com conhecimento na execução dos serviços, composta de:

- a) Engenheiro Civil;
- b) Encarregado de Topografia;
- c) Encarregado de Laboratório;
- d) Encarregado de Drenagem;
- e) Encarregado de Pavimentação;
- f) Assitente de Engenharia.

A execução foi divida em duas fases. A primeira fase consistiu em informar toda a população local sobre os prazos de início e fim da obra, inclusive sobre os desvios de tráfego. A segunda fase foi a da construção de toda a via, desde o início na regularização até a limpeza da obra.

4.1 ELEMENTOS TÉCNICOS LICITATÓRIOS ATÉ A CONTRATAÇÃO DA OBRA

Desde a publicação da licitação, a equipe da empresa 'B' buscou realizar pesquisas de mercado a fim de conseguir um melhor ajuste na planilha orçamentária. Houve um estudo sobre o solo que seria empregado na obra, e com isso foi descoberta uma jazida com material de qualidade superior ao da planilha e com um preço menor, facilitando o desconto na planilha.

O descarte de resíduos da construção civil em área licenciada foi outro fator fundamental no ajuste de preço. A empresa 'B' tinha um convênio com uma empresa responsável pela destinação correta dos resíduos, diminuindo assim o custo do m³ descartado. Para fins de esclarecimento, o valor global deste item era de R\$128.452,36, que recebeu desconto de 35%, facilitando a diminuição do valor global da obra.

A empresa 'B' pertence ao Simples Nacional, que é um regime tributário que facilita toda parte burocrática da empresa e reduz o custo dos serviços. Isso ocorre porque ele é o responsável direto pela taxa de Benefícios e Despesas Indiretas (BDI), ou seja, aumentando ainda mais o fator de concorrência da empresa.

4.2 EXECUÇÃO DO MOVIMENTO DE TERRA, SUB-BASE E BASE

A primeira etapa no movimento de terra está ligada diretamente com a locação da obra por estaqueamento com a estação total, seguindo com o rebaixamento dos segmentos indicados no projeto para implantação da estrutura do pavimento. Todo o material que foi escavado foi destinado ao botafora e depois levado para a usina de reciclagem. Foi necessário fazer o rebaixamento da via existente por conta das edificações vizinhas.

Sabe-se que o controle tecnológico são de suma importância para implantação de quaisquer edificações. Na obra em estudo, embora diversos ensaios de solo tenham sido empregados, houve pouco controle tecnológico da regularização do subleito, que dificultou o mapeamento do solo que estaria fornecendo todo o suporte para as camadas seguintes. No estudo do subleito. Foram executados 7 furos de sondagem ao longo dos 1.009km da via do projeto, com aproximadamente 2,00m abaixo da linha do greide de terraplenagem nos trechos sem pavimento. Essas amostras foram colhidas para elaboração dos ensaios.

Foi feita a analise do índice de grupo (IG), ele identifica a qualidade do material, de acordo com os dados obtidos nos ensaios e seguindo a tabela do manual de tecnicas da pavimentação. Toda a analise precisa ser feita de maneira conjunta com os resultados dos ensaios efetuados in loco para uma maior clareza de como será projetada as camadas superiores ao subleito, assim executando de forma adequada e seguindo todos os passos do manual dificultará qualquer surgimento de patologias futuras. O subleito foi objeto de estudo pois o mesmo é importantissimo para a execução de todo o movimento de terra da via projetada.

O sistema rodoviario de classificação vai indicar a adequabilidade do solo para a utilização dele como subleito (solo de fundação do pavimento), ele precisa apresentar caracteristicas que suportem camadas superiores sem a necessidade de fazer qualquer tipo de reforço. Nesse sistema o solo é classifcado por letras e números, existem 7 grupos (Figura 22).

Figura 22 – Classificação AASHTO

CLASSIFICAÇÃO DE SOLOS: Sugestão do Highway Research Board-HRB adotada pela AASHTO

•	•										
			Mate	Materiais granulares	ılares			N	Materiais si	s siltosos e argilosos	gilosos
Classificação Geral		(35% o	u menos p	(35% ou menos passando na peneira nº 200)	a peneira ı	nº 200)		(mais de	35% pass	ando na pe	(mais de 35% passando na peneira nº 200)
	A-1	.1	C V		A	A-2		•	^ E	2 0	A-7
Grupo	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-3	A-0	A-7-5 / A-7-6
Peneiração: % que passa:											
Nº 10	50 máx.										
Nº 40	30 máx.	50 máx. 51 mín.	51 mín.								
Nº 200 (p)	15 máx.	25 máx. 10 máx.		35 máx.	35 máx.	35 máx.	35 máx.	36 mín.	36 mín.	36 mín.	36 mín.
Características da fração											
que passa nº 40											
Limite de Liquidez - LL (%)				40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.
Indice de Plasticidade											
IP (%)	6 máx.	ιáx.	NP	10 máx.	10 máx. 10 máx.	11 mín. 11 mín.	11 mín.	10 máx.	10 máx.	11 mín.	11 mín.
Índice de Grupo	0)	0))	4 n	4 máx.	8 máx.	12 máx.	16 máx.	20 máx.
Materiais que	Pedra Britada	3ritada	Areia fina	Arois	Areia e areia ciloca ou argiloca	امدء میں عدم	iloca	s sulus	Solos Siltosos	olos	argilosos
predominam	pedregulho e areia	10 e areia	Ai cia illia	Zi Cir	a c ai cia si	losa ou al 8	jilosa	50105	MI COSOS	2010	Joing at Bridges
Comportamento geral			Exc	Excelente a bom	om				Frac	Fraco a pobre	
como subleito										2 1000.0	

Processo de classificação: Com os dados de laboratório, iniciar a classificação da esquerda para a direita, por eliminação. O primeiro grupo da esquerda que satisfazer os dados será o grupo procurado.

SOLOS A-7: Se IP ≤ LL -30, será A-7-5; Se IP > LL - 30, será A-7-6.

Índice de Grupo (IG): $IG = 0.2 \cdot a + 0.005 \cdot a \cdot c + 0.01 \cdot b \cdot d$

a = p - 35

p: teor de silte + argila do solo, ou seja, a porcentagem que passa na peneira nº 200.

(se p > 75%, adota-se 75 e se p < 35%, adota-se 35)

d = IP - 10c = LL - 40 **b**= p - 15 (se IP > 30, adota-se 30 e se IP < 10, adota-se 10) (se LL > 60%, adota-se 60 e se LL < 40%, adota-se 40) (se p > 55%, adota-se 55 e se p < 15%, adota-se 15)

 c varia de 0 a 20 e 0,005.
 a . c varia de 0 a 4.
 d varia de 0 a 20 e 0,01.
 b . d varia de 0 a 8. **b** varia de 0 a 40 e 0,01 . **b . d** varia de 0 a 8.

a varia de 0 a 40 e 0,2. a varia de 0 a 8.

IG - o resultado final obtido deve ser um nº inteiro - aproximação para o nº inteiro acima.

Fonte: Manual de Tecnicas de Pavimentação (2006)

50 Índice de plasticidade (IP) 40 A7-6 30 A-6 A7-5 20 Argilas siltosas Argilas plásticas c/ medianamente plásticas matéria orgânica 10 Solos siltosos Solos siltosos 0 40 50 70 80 0 10 20 60 Limite de liquidez (LL)

Gráfico 1 - Classificação índices de consistências

Fonte: Autor (2022)

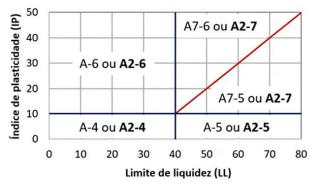


Gráfico 2 - Classificação índices de consistências

Fonte: Autor (2022)

De acordo com o Anexo 2 - Ensaio de Subleito. Exemplo da 1ª amostra:

$$LL = 0$$

$$IP = NP = 0$$

Cálculo do IG:

$$a = 12 - 35 = -23 = 0$$

$$b = 12 - 15 = -3 = 0$$

$$c = LL - 40 = 0$$

$$d = IP - 10 = 0$$

$$IG = 0$$

Seguindo a clafissicação dos índices de consistências, o solo é o A-2-4

Foram feitos todos os cálculos para todas as amostras, resultados estão listados abaixo:

- 1) Classificação A-2-4;
- 2) Classificação A-6;
- 3) Classificação A-4;
- 4) Classificação A-7-5;
- 5) Classificação A-6;
- 6) Classificação A-7-5;
- 7) Classificação A-7-6;
- 8) Classificação A-7-5;
- 9) Classificação A-6;
- 10) Classificação A-7-5;
- 11) Classificação A-7-5;
- 12) Classificação A-6;
- 13) Classificação A-6;
- 14) Classificação A-6.

De acordo com o resultado obitido pela analise do material da amostra se comparado com a classificação de solos adotada pela AASHTO, apenas a amostra 1 estaria com qualidade para poder continuar sendo subleito, todas as outras amostras estão com compartamento fraco e pobre e precisaria de uma reforço de subleito.

Ademais, o subleito apresentou material com baixa qualidade. Foi comunicado ao órgão fiscalizador a necessidade de se fazer o reforço do mesmo em quase todo o trecho, e para tanto, seria necessário um aditivo de contrato. Na ocasião, o engenheiro responsável pela obra elaborou um pedido ao órgão fiscalizador dos itens que precisariam ser aditados, que são:

- a) Remoção de 936m³ de solo com qualidade ruim;
- b) Aumento do bota fora;
- c) Aumento do descarte de resíduos sólidos em área licenciada;
- d) Reforço do subleito.

Infelizmente, por se tratar de uma obra pública, o aditivo de contrato não poderia ultrapassar 25% do valor total. Porém, esse limite orçamentário foi atingido, o que impossibilitou a execução do reforço do subleito da via, consequentemente dificultando todo o processo que se sucederia. A alternativa mais viável, e então exectuada, a fim de tentar amenizar quaisquer patologias a curto prazo, foi fazer a escarificação de todo o trecho até uma profundidade de 30,00 cm com a aeração, usando trator de esteira homogeneização e compactação a 100% do Proctor Normal. Logo depois, foi feito o teste de carga com 80 psi no rolo de pneu. Foi necessário que todas as etapas consecultivas passasem de um controle tecnológico rigoroso em relação a solo, a fim de evitar o surgimento de ondulações e buracos ao longo da via no processo de execução da sub-base, base e revestimento.

A Sub-base foi executada ao longo de todo o trecho que corresponde a 1.009m, estaqueados a cada 20m. A camada de sub-base precisava ter 20cm de espessura de acordo com o projeto elaborado na gestão da concepção. Em sua execução, porém, deveria haver um mínimo de 10cm de espessura de acordo com a norma do DNIT 139/2010 – ES.

O processo de execução se iniciou no ponto mais estratégico da via, no sentido da BR 101, onde seria de fácil acesso para o recebimento de todo o material. O caminhão basculante (Figura 23) deixava o material no local demarcado pelo apontador, o qual era necessário para iniciar a fase de execução com os equipamentos.

A motoniveladora (Figura 24) executou o trabalho de espalhamento do material. Em seguida, houve o estaqueamento e largura da via, conforme indicado pelo projeto e demarcado pela equipe de topografia. É necessário ter um profissional responsável por sempre fazer o acompanhamento desses equipamentos, o qual é conhecido mais popularmente como "corredor de linha". O seu trabalho é fazer as conferências nas estacas indicadas e informar para o operador se será preciso aumentar ou diminuir o material naquela estaca e assim por diante.

Figura 23 - Caminhão basculante

Fonte: O autor (2021)

Figura 24 - Motoniveladora

Fonte: O autor (2021)

O trator de grade (Figura 25) precisa trabalhar em conjunto com a motoniveladora, fazendo o serviço de homogeneização do material que estava sendo espalhado por ela. Nessa parte da execução, a jazida não cumpriu sua parte acordada no contrato, ao enviar um material com qualidade inferior ao que havia sido acordado, atrasando a execução de todo o serviço.

O umedecimento do material foi executado logo em seguida pelo caminhão pipa (Figura 26). O laboratorista fez todo o acompanhamento para que a umidade ótima não ultrapassasse o indicado pelo projeto. Infelizmente houve um período de chuva nessa parte de execução, causando um aumento da umidade. Foi então feito um retrabalho no trecho, passando novamente o trator de grade para deixar o solo secando para depois executar novamente todo o serviço necessário.

Figura 25 - Trator de grade

Fonte: O autor (2021)

Figura 26 - Caminhão pipa

Fonte: O autor (2021)

O rolo pé de carneiro foi o último equipamento a ser utilizado na execução da sub-base. Sua função é fazer toda a compactação do solo para receber a próxima camada da estrutura. Foi indicado pelo projeto que ele deveria ter um número de passadas maior ou igual a 6, e assim foi executado. Nessa fase não houve quaisquer incidência de problemas pois já se tratava da fase final, e todo o controle já havia sido elaborado a fim de evitar imprevistos.

A espessura da base indicada no projeto é de 35,00 cm, foi decidido pela equipe que a execução deveria ser feita em três camadas, a primeira com 10,00 cm, a segunda com 10,00 cm e a última camada com 15,00 cm. Toda a execução foi similar ao que foi feito para a sub-base.

O tráfego de equipamentos juntamente com um problema no aspersor do caminhão pipa acabou favorecendo o surgimento de ondulações na segunda camada da base. A solução foi remover os equipamentos que estavam sempre na via, aguardando o momento do seu uso e fazendo os reparos necessários no caminhão, abrindo-se o trecho na parte em que havia ondulação.

A diferença entre a sub-base e base está na compactação da última camada, e portanto foi necessário acompanhar de perto a fim de evitar o surgimento de ondulações. Na última fase da execução foi necessário inserir o rolo liso, cuja função era fazer com que o acabamento da via ficasse perfeito para receber o revestimento em CBUQ.

4.3 EXECUÇÃO DA DRENAGEM E DA PAVIMENTAÇÃO ASFÁLTICA

A execução de toda parte da drenagem foi feita no início da obra, visando uma melhor qualidade do pavimento, pois é sabido que executar drenagem após a base pronta pode provocar a aceleração do surgimento de patologias no trecho.

Foi necessário fazer uma limpeza manual da via (Figura 27) para a demarcação, juntamente com a equipe de topografia, fazendo a locação exata de acordo com as estacas de onde seria executada a drenagem.


Figura 27 - Limpeza manual da via

Fonte: O autor (2021)

Para o assentamento das manilhas foi necessário fazer uma escavação mecânica da via com 2,4m de profundidade e 2 metros de largura (Figura 28). Para possibilitar a execução correta, com a escavação pronta, foi feita a regularização do leito natural do terreno para verificar a necessidade de se fazer um reforço de subleito. Logo em seguida, foi feita a execução do colchão de areia (Figura 29) com 30cm de espessura compactado a cada 15cm para melhorar sua resistência e evitar a ocorrência de qualquer movimentação do solo e que pudesse danificar as manilhas assentadas.

Toda a execução precisou ser feita com muito controle em todas as etapas, pois qualquer falha poderia prejudicar o pavimento a curto prazo, acarretando um prejuízo futuro que poderia ser evitado.

Figura 28 - Escavação de vala

Fonte: O autor (2021)

Figura 29 – Compactação

Fonte: O autor (2021)

Usando a pá da retroescavadeira, as manilhas foram colocadas no local. Depois do assentamento, foi necessário haver o rejuntamento (Figura 30) para evitar que houvesse infiltração ao redor das manilhas.

Por fim, foi necessário fazer a substituição de todo solo escavado com um material de qualidade (Figura 31) que tivesse um CBR maior que 20, e continuar o serviço de movimentação de terra.

Figura 30 - Rejuntamento

Fonte: O autor (2021)

Figura 31 - Aterro

Fonte: O autor (2021)

Para executar o revestimento foi necessário fazer a imprimação da via com CM-30 (Figuras 32 e 33). Para tanto, toda a via foi interditada e o caminhão espargidor fez o jatemento do trecho a ser revestido. A função da imprimação é basicamente impermeabilizar a última camada de terraplenagem, aumentando seu grau de resistência contra a percolação da água.

Figura 32 – Imprimação/Espargidor

Fonte: O autor (2021)

Figura 33 – Imprimação

Fonte: O autor (2021)

A via foi interditada por 72h, de acordo com o fornecedor do insumo a fim de evitar danos. Depois do prazo estabelecido, houve a execução da pintura de ligação (Figura 34), responsável por fazer a ligação da camada executada com o CBUQ.

A aplicação do CBUQ foi executada com 5 cm de espessura (Figuras 35 e 36) de acordo com projeto executivo cedido pelo órgão e elaborado pela CTENG. Os caminhões basculantes chegavam com o material e faziam o despejo na acabadora, equipamento responsável por fazer a aplicação do CBUQ. Logo em seguida o rolo liso fazia o acabamento, e por último o rolo de pneu executava o acabamento final. Não houve quaisquer incidências nessa parte da execução, e o fluxo de veículos foi liberado depois de 2h do revestimento pronto.

Figura 34 – Emulsão

Figura 35 - CBUQ

Figura 36 - Revestimento

Fonte: O autor (2021)

Fonte: O autor (2021)

Fonte: O autor (2021)

É importante ressaltar que o revestimento em CBUQ (Concreto Betuminoso Usinado a Quente) foi executado por uma empresa terceirizada indicada pelo projeto executivo. Todo controle tecnológico do revestimento foi de inteira responsabilidade da empresa que executou o revestimento. Para tanto, foi enviado para o setor técnico da empresa todos os ensaios de sub-base e base efetuados no laboratório e *in loco* a fim de resguardar ambas as partes. O resultado final da obra (Figura 37), acompanhou todos os níveis de qualidade.

Figura 37 – Obra concluida

Fonte: O autor (2021)

5 CONCLUSÃO

Ao longo do presente trabalho, foi possivel analisar de forma mais ampla todas as etapas da obra, desde o aviso da licitação até a execução dos serviços finais para a sua inauguração. O foco do estudo estava relacionado ao controle tecnológico de todo o material empregado na sua execução.

Com base em todos os dados e nas análises realizadas neste trabalho, destaca-se que as principais conclusões foram:

- É de grande importância fazer uma análise dos projetos complementares antes mesmo de iniciar a obra, evitando qualquer paralização por falta de informações sobre determinado projeto;
- O subleito do trecho precisava de uma análise mais profunda por parte do órgão fiscalizador. Conforme apresentado nessa monografia, observa-se o surgimento de patalogias a curto prazo de acordo com a avalição Í ndice de Grupo obtido pelos ensaios, o que poderia ser evitado durante a fase de execução de obra;
- Há uma grande dificuldade em fazer quaisquer modificações durante a fase de execução de obras licitadas.

O projeto de execução contou com cerca de cinco meses para o fim da obra, o trecho final pavimentado teve extensão de 1.009m. A pavimentação favoreceu todo o transporte local dos moradores e aumentou a qualidade de locomoção, visto que a região não possuia transporte público, e o mesmo foi implementado logo após a finalização da obra. De modo geral, a execução da obra foi um fator fundamental no desenvolvimento regional, facilitando o acesso a dois órgãos importantes para a população: o o Presídio Feminino e o Instituto Médico Legal.

Com base em todas as informações expostas, o objetivo do trabalho foi atendido, uma vez que foi possível identificar todas as etapas e problemas durante a a execução.

O aluno participou da obra como assistente de engenharia, compreendendo a responsabilidade de participar de uma obra tão complexa, a experiencia final foi muito importante para o desenvolvimento e evolução profissional do mesmo, facilitando o entendimento das estapas construtivas de obras de terraplenagem.

6 RECOMENDAÇÕES PARA TRABALHOS FUTUROS

- Verificar o comportamento do CBUQ executado sobre o trecho sem a necessidade do reforço de subleito x trecho que necessitava do reforço de subleito;
 - Monitorar o surgimento de patologias nos trechos onde há drenagem;
- Monitorar o surgimento de patologias no trechos que necessitavam de reforço de subleito;
- Realizar uma consulta pública na região com objetivo de identificar se houve uma melhoria na qualidade de locomoção depois da execuçao da obra;
 - Avaliar o conforto da via.

REFERÊNCIAS

Agência da Confederação Nacional do Transporte - Transporte Atual. **Pesquisa CNT de Rodovias indica que 57% dos trechos apresentam problemas**. Publicado em 18/10/2018. Disponível em https://www.cnt.org.br/agencia-cnt/pesquisa-cnt-rodovias-2018-indica-57-trechos-apresentam-problemas. Acesso em: 09/12/2022.

AGRO. Solo Arenoso: **Qual é o melhor plantio para esse tipo de terra**. Publicado em 30/11/2021. Disponível em: https://summitagro.estadao.com.br/noticias-do-campo/solo-arenoso-qual-e-o-melhor-plantio-para-esse-tipo-de-terra. Acesso em: 29 /07/2022.

AGROPOS. **Solo Argiloso.** 2019. Disponível em: https://agropos.com.br/solo-argiloso/>. Acesso em: 05 /07/2022.

ALBANO, J.F. **A Organização Rodoviária**. Produção UFRGS, 2022. Disponivel em: http://www.producao.ufrgs.br/arquivos/disciplinas/420_04-organizacao_rodoviaria.pdf Acesso em: 27/11/2022.

ALMEIDA, G. Caracterização Física e Classificação dos Solos. Universidade Federal de Juiz de Fora. 2005.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 15953**: Pavimento intertravado com peças de concreto – execução. Rio de Janeiro, 2011.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7182 de 09/2016 - Solo - Ensaio de Compactação**.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7185 de 03/2016 - Determinação da Massa Específica Aparente do Solo,** *In situ*, **Com Emprego do Frasco de Areia.** 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7207 de 02/1982: Terminologia e Classificação de Pavimentação.** 1982.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 9895 de 10/2016 - Solo – Índice de Suporte Califórnia (ISC) - Método de Ensaio.** 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR15953 de 05/2011. Pavimento intertravado com peças de concreto — Execução. 2011.

BALBO, J. T. **Pavimentação asfáltica: materiais, projeto e restauração.** São Paulo, SP: Oficina de Textos, 2007.

BARBOSA, M. B. **Utilização de resíduo de cinza de casca de arroz e borracha em concreto de alto desempenho**. Dissertação (Mestrado em Engenharia) – Programa de Mestra, 2006.

BARBOSA, P. Saiba quais os tipos de solo antes de realizar terraplanagem, 2019. Disponível em: https://www.terrabrasilterraplenagem.com.br/saiba-quais-ostipos-de-solo-antes-de-realizar-terraplenagem Acesso em: 31/07/2022.

- BERNUCCI, L.B.; MOTTA, L.M.G. da; CERATTI, J.A.P; SOARES, J.B. **Pavimentação asfáltica**: formação básica para engenheiros. Rio de Janeiro: PETROBRAS: ABEDA, 2008.
- BIOPDI. **Ensaio CBR ou Índice de Suporte Califórnia**. 2019. Disponível em: Acesso em: 31/07/2022.
- BORGES, E. Ensaio de limite de liquidez e plasticidade. 2015. Tudo Eng Civil.
- BUFFON, C. A. **Ensaios de solos para pavimentação.** Universidade do Planalto Catarinense UNIPLAC. 2014.
- CALLISTER, J. D. **Ciência e Engenharia de Materiais: uma Introcução.** 5 ed. Rio de Janeiro. Livros Técnicos Científicos. 2002. 589 p.
- CAMPOS, I. M. **Conheça os três tipos principais de solo**: areia, silte e argila. Era Ambiental, 2013. IBDA Instituto Brasileiro de Desenvolvimento da Arquitetura. Disponível em: https://www.erambiental.com .br/var/userfiles/arquivos69/documentos/12816/PermeabilidadeSolos.pdf> Acesso em: 30 /07/2022.
- CAPUTO, Homero Pinto. **Mecânica dos Solos**. Volume I, Rio de Janeiro: Editora Livros Técnicos e Científicos S.S., 1975.,
- CNT CONFEDERAÇÃO NACIONAL DO TRANSPORTE. **Conheça os 13 principais defeitos do pavimento das rodovias.** Publicado em 08/02/2018. Disponível em: < https://www.cnt.org.br/agencia-cnt/conheca-principais-defeitos-pavimento> . Acesso em: 30 /07/2022.
- CONTRAN Conselho Nacional de Trânsito. Sinalização horizontal. 1. ed, Brasília: CONTRAN, 2007. 128 p., v.4. CONTRAN Conselho Nacional de Trânsito. **Sinalização vertical de regulamentação**. 2. ed, Brasília: CONTRAN, 2007. 220 p., v.1.
- CORRÊA, R. R. **Proposta de metodologia de controle de qualidade de peças de concreto para pavimentação**. 2013. 307 f. Dissertação (Mestrado em Engenharia Civil) Programa de Pós-Graduação em Engenharia Civil. Universidade Federal de Santa Catarina (UFSC), Florianópolis, 2013.
- DAL-MASO, J. **Pisos industriais de concreto com armadura distribuída projeto e execução**. 2008. 77 f. Trabalho de Diplomação (Graduação em Engenharia Civil) Centro de Tecnologia, Universidade Federal de Santa Maria, Santa Maria. 2008.
- DAS, B. M. **Fundamentos de engenharia geotécnica.** Tradução All Tasks. Revisão técnica Pérsio Leister de Almeida Barros. 6. ed. São Paulo: Thomson Learning, 2007. De Almeida, G.C.P., 2005. Caracterização física e classificação dos solos. Juiz de Fora.
- DAS, Braja M.; SOBHAN, Khaled. **Fundamentos de engenharia geotécnica**: Tradução da 8ª edição norte-americana. São Paulo: Cengage Learning, 2014. Tradução de: Noveritis do Brasil. Revisão Técnica de: Roberta Boszczowski.

De ALMEIDA, G.C.P., 2005. **Caracterização física e classificação dos solos**. Universidade Federal de Juiz de Fora.

DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM - Norma Rodoviária DNER-ME 092/94 - Solo-determinação da massa específica aparente "in situ", com emprego do frasco de areia. Norma rodoviária. 1994.

DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM — DNER. Norma Rodoviária DNER 049/94 - Ensaio Índice de Suporte Califórnia (Método De Ensaio). 1994.

DNER - DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Norma Rodoviária DNER ME 162 de 04/94 - Compactação Amostra Trabalhada. 1994.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES – DNIT. Norma DNIT 139/2010 - ES. Pavimentação – Sub-Base Estabilizada Granulometricamente - Especificação de Serviço. MINISTÉRIO DOS TRANSPORTES. 2010.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES – DNIT. NORMA DNIT 164/2013-ME. SOLOS – Compactação Utilizando Amostras Não Trabalhadas – Método de Ensaio. MINISTÉRIO DOS TRANSPORTES. 2013.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES — DNIT. NORMA 022/2006 — **ES. Drenagem — Dissipadores de Energia. Especificação de Serviço.** 2006.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES – DNIT. NORMA 172/2016 - ME DNIT SOLOS – Determinação do Índice de Suporte Califórnia Utilizando Amostras Não Trabalhadas – Método De Ensaio. 2016.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES- DNIT. **Manual de Pavimentação**. 3º Edição. Rio de Janeiro:Instituro de Pesquisas Rodoviárias, 2006. 274 p.

DIRECTIVA. **Ensaio de suporte california**. 2020. Disponível em: < rhttps://directiva.eng.br/servico/ensaio-de-suporte-california> Acesso em: 01/08/2022.

DONISETE, I. **Ensaio de Índice de Suporte Califórnia – CBR.** Publicado em 31/10/2016. Disponível em: < https://pt.scribd.com/document/363777437/Ensaio-de-Indice-de-Suporte-California-CBR#> Acesso em: 31/07/2022.

EDUCA CIVIL. **Tipos de solos e suas principais características**. Publicado em 26/10/2020. Disponível em https://educacivil.com/3-tipos-de-solos-e-suas-principais-caracteristicas/ Acesso em: 31/07/2022.

EMBRAPA, Empresa Brasileira de Pesquisa Agropecuária. **Sistema Brasileiro de Classificação de Solos**. 2ª Edição. Brasília - DF: EMBRAPA-SPI, 2006.

ENGENHARIA, Guia. **Peso específico do frasco de areia**, 2020. Disponível em: < https://www.guiadaengenharia.com/wp-content/uploads/2020/07/peso-especifico-frasco-areia.jpg> Acesso em: 31/07/2022.

- FARM. **Qual é a permeabilidade do solo argiloso**, 2022. Disponível em: Acesso em: 30/07/2022.">https://easyfarm.io/soloargiloso/#Qual_e_a_Permeabilidade_do_Solo_Argiloso>Acesso em: 30/07/2022.
- FERNANDES, M. M. Mecânica dos Solos, Introdução à Engenharia Geotécnica, vol. 2. FEUP, 2011.
- GALVA MINAS. **Resistência do solo para construção e tipos de fundação**, 2017. Disponível em < https://www.galvaminas.com.br/blog/resistencia-do-solo-para-construcao-x-tipos-de-fundação/> Acesso em: 29 /07/2022.
- GEOANALISYS. **Os principais tipos de solo e suas fundações mais aconselháveis.** 2020. Disponível em: < https://www.geoanalisys.com/conhec%CC%A7a-os-principais-tipos-de-solo-e-suas-fundac%CC%A7o%CC%83es-mais-aconselhaveis/>. Acesso em: 25/08/2022.
- GEOTECNIA. **Portfólio: Densidade** *in situ*, 2018. Disponível em < http://www.torresgeotecnia.com.br/portfolio-view/densidade-in-situ/> Acesso em: 31/07/2022.
- HELENA, L. **Compactação de solos**: **Ensaios geotécnicos.** 2018. Disponível em: https://www.suportesolos.com.br/blog/compactacao-de-solos-ensaios-geotecnicos-o-ensaio-e-as-energias-de-compactacao/68/ Acesso em 10/07/2022.
- INFOPÉDIA, DIÁRIOS PORTO EDITORA. **Lei de Stokes**. 2018. Disponível em: https://www.infopedia.pt/\$lei-de-stokes>. Acesso em: 08/07/2022..
- IVAN, R. **Solo argiloso: Características, tipos e permeabilidade,** 2022. Disponível em:
- https://easyfarm.io/soloargiloso/#:~:text=o%20seu%20preparo.,Qual%20%C3%A9%20a%20Permeabilidade%20do%20Solo%20Argiloso%3F,e%20tamb%C3%A9m%20seca%20com20facilidade.> Acesso em: 30 de jul. de 2022.
- JUNIOR, I. J. A. Pavimento intertravado como ferramenta de moderação do tráfego nos centros comerciais de travessias urbanas Estudo de Caso Guaiúba, CE. 2007, 221 f. Dissertação (Mestrado) Mestrado em Ciências em Engenharia de Transportes, Universidade Federal do Ceará, Fortaleza, 2007.
- KOZLOFF, K.; COWART, R.; JANNUZZI, G. DE M.; MIELNIK, O., 2001 Energia: Recomendações para uma Estratégia Nacional de Combate ao Desperdício USAID, Campinas, 193p.
- LAFAYETTE, K.P.V., CANTALICE, J.R.B. e COUTINHO, R.Q., 2011. **Resistência à erosão em ravinas, em latossolo argiloarenoso.** Revista Brasileira de Ciência do Solo, 35, pp.2167-2174.
- LAGETEC Laboratório de Geotécnica. **Ensaios de limites de liquidez e plasticidade de material granular.** Laboratório de Geotécnica Departamento de Geologia, 2016. Disponível em: http://www.lagetec.ufc.br/wp-content/uploads/2016/03/Ensaios-de-limites-de-liquidez-e-plasticidade-de-material-granular.pdf Acesso em 31/07/2022.
- LEITE, L. F. M. Curso Básico Intensivo de Pavimentação Urbana Módulo Básico Ligantes Asfálticos. Rio de janeiro, 2018.

- LESSA, D. Especial Rodovias As primeiras estradas brasileiras (05' 49"). Câmara dos Deputados. 2005.
- LUNA, F. J.; SCHUCHARDT, U. **Argilas pilarizadas Uma Introdução.** Química Nova, v. 22, n.1, p. 104 109, 1999.
- MACHADO, R. Estudo aplicado da solução de projeto de pavimentação para pátio de estacionamento de ônibus. Centro de Engenharias da Mobilidade (CEM) da Universidade Federal de Santa Catarina (UFSC), Joinville SC, 2015.
- Manual de pavimentação. 3.ed. Rio de Janeiro, 2006. 274p. (IPR. Publ., 719).
- MARINHO, F. **Peso específico do frasco de areia**, 2020. Disponível emhttps://www.guiadaengenharia.com/wp-content/uploads/2020/07/peso-especifico-frasco-areia.jpg> Acesso em 31/07/2022.
- MARQUES, G. L. O. **Notas de aula da disciplina pavimentação**. 204 p. Notas de aula, Faculdade de Engenharia. Universidade Federal de Juiz de Fora. Juiz de Fora. [2012]. do em Engenharia Civil, Ilha Solteira, São Paulo, 2006.
- MEDEIROS, J. S. Alvenaria estrutural não armada de blocos de concreto: produção de componentes e parâmetros de projeto. 1993. Dissertação (Mestrado em Engenharia Civil) Pós-Graduação em Engenharia Civil. Departamento de Engenharia de Construção Civil, Escola Politécnica da Universidade de São Paulo, USP. 1993.
- MEDINA, J. MOTTA, L. M. G. **Mecânica dos pavimentos**. 2 ed. Rio de Janeiro: Editora UFRJ, 2005, 570 p.
- MEDINA. **Tipos de solos: Saiba as características de solo para sua obra**. 2021. Disponível em: https://engm3.com/tipos-de-solos-saiba-as-caracteristicas-de-solo-para-sua-obra/ Acesso em: 30 de jul de 2022.
- MODERNELL, R.. Cinco mil anos de loucuras no trânsito. Revista Quatro Rodas. São Paulo, n. 312, p. 44-49, jul. 1986.
- MOLINARI, D.C. e VIEIRA, A.F.G., 2004. Considerações preliminares sobre a capacidade de infiltração de água no solo no Distrito Industrial II MANAUS (AM). V Simpósio Nacional de Geomorfologia-I Encontro Sul-Americano de Geomorfologia. UFSM-RS.
- MOREIRA, F. M. Influência dos Equipamentos no Processo de Compactação em Solos na Cidade de Mossoró. 2012. 59f. Trabalho de Conclusão de Curso (Obtenção de Título de Bacharel em Ciência e Tecnologia) Universidade Federal Rural do Semi- Árido UFERSA, Mossoró, 2012
- MOURA, R. M. Índice de Suporte Califórnia (ISC) ou CBR (Califórnia). Departamento de estradas de rodagem, Califórnia, Estados Unidos. Disponível em: http://www.latersolo.com.br/wp-content/uploads/2015/02/4-CAPACIDADE-DE-SUPORTE-CBR.pdf. Acesso em: 30 /07/2022.
- NEVILLE, A. Propriedades do concreto. 2. ed. São Paulo: PINI, 1997.
- PEREIRA, L.A.G. e LESSA, S.N., 2011. **O processo de planejamento e desenvolvimento do transporte rodoviário no Brasil.** *Caminhos de Geografia*, 12(40).

- PETROBRÁS (fonte da Figura 19 **Pavimento asfáltico**). 2022. Disponível em: https://petrobras.com.br/en/our-activities/products/paving/petroleum-asphalt-cement-pac/ Acesso em: 10/09/2022.
- PETROENGE (Fonte da Figura 20 **Aplicação de CBUQ**). Acessado em 10/10/2022. Disponível em: https://www.petroengedf.com.br/produtos-betuminosos-cbuq/. Acessado em 10/09/2022.
- PINHEIRO, I. **Tipos de Solos na engenharia Civil**, 2020. Disponível emhttps://www.inovacivil.com.br/tipos-de-solos-na-engenharia-civil/ Acesso em: 31/07/2022.
- PINTO, Carlos Sousa. **Curso Básico de Mecânica dos Solos**, 3. ed. São Paulo: Editora Oficina de Textos, 2006.
- QUEIROZ, J. L. E RIGATO, G. **Determinação do índice de suporte Califórnia em solos do norte do estado do Espírito Santo.** Congresso Técnico Científico da Engenharia e da Agronomia CONTECC, 2016.
- RESENDE, Paulo Tarso Vilela de; SOUSA, Paulo Renato de; SILVA, Amanda Cecilia Rodrigues. **Obras de infraestrutura no Brasil**. Mundo Logística, Rio de Janeiro, v. 5, n. 28, p. 78-80, mai./jun. 2012.
- SANTOS, M. N. **Análise do efeito da estabilização mecânica em matrizes de terra.** Relatório final de iniciação científica Pontifícia Universidade Católica do Rio de Janeiro. 2012.
- SAUNIER, W.P., 1936. **Discussion-" Wrought Copper Base Alloys".** Industrial & Engineering Chemistry, 28(12), pp.1401-1401.
- SENÇO, W. **Manual de Técnicas de Pavimentação**. Editora Pini, Volume 1, 2°Edição, São Paulo, Brasil, 2007.
- SILVEIRA, A. L.; Louzada, J. A.; Beltrame, L F. **Infiltração e armazenamento no solo**. In: TUCCI, Carlos E.M. Hidrologia: ciência e aplicação. Porto Alegre: Ed.Universidade; ABRH, EDUSP, 1993.
- SOUZA, M. L. de. **Pavimentação rodoviária.** Rio de Janeiro: Livros Técnicos e Científicos Ed., 1980.
- SOUZA, R O.; PORTELA, J. C.; SILVA, M. L. N. et al.. Determinação dos limites de liquidez e plasticidade em um Cambissolo sob Sistema Agroecológico no município de Governador Dix-sept Rosado RN. XXXIV Congresso Brasileira de Ciência do Solo. Florianópolis Santa Catarina, 2013. Disponível em: https://www.eventosolos.org.br/cbcs2013/anais/arquivos/535.pdf Acesso em 31/07/2022.
- SUPORTE SOLOS. Conheça o índice de suporte Califórnia ISC popularmente conhecida como ensaio de CBR. 2020. Disponível em https://www.suportesolos.com.br/blog/conheca-o-indice-de-suporte-california-isc-popularmente-conhecido-como-ensaio-de-cbr/198 Acesso em: 31/07/2022.
- SUPORTE SOLOS. Consistência do Solo: Ensaios geotécnicos. Ensaios de Limites de liquidez LL e de plasticidade LP, 2017. Disponível

em<https://www.suportesolos

.com.br/blog/consistencia-do-solo-ensaios-geotecnicos-ensaios-de-limite-de-liquidez-ll-e-de-plasticidade-lp/33/> Acesso em: 31/07/2022.

TIZZO, M. Fertilidade de solo: O que você precisa saber para alcançar altas produtividades. 2021. Disponível em: https://blog.sensix.ag/fertilidade-de-solo-o-que-voce-precisa-saber-para-alcancar-altas-produtividades/. Acesso em: 30 /07/2022.

TUCCI, C. E. M.; PORTO, R. L. L.; BARROS, M. T. **Drenagem Urbana**. 1. ed. Porto Alegre. Editora da Universidade/ UFRGS, 1995.

VIVA DECORA. **Tipos de solo**, 2020. Disponível em: https://www.vivadecora.com.br/pro/tipos-de-solo Acesso em: 30 /07/2022.

ANEXOS

ANEXO 1 - CLASSIFICAÇÃO LICITAÇÃO

quarta-feira, 05 de Maio de 2021 Aracaju - Sergipe

Nº 28.661

Diário Oficial Estado de Sergipe

www.segrase.se.gov.br N° 28.661 Aracaju/Sergipe quarta-feira, 05 de Maio de 2021

GOVERNO DE SERGIPE SECRETARIA DE ESTADO DO

DESENVOLVIMENTO URBANO E SUSTENTABILIDADE-SEDURBS EXTRATO DA HOMOLOGAÇÃO DA REPUBLICAÇÃO DA TOMADA DE PREÇOS Nº 01/2021

OBJETO: EXECUÇÃO DOS SERVIÇOS/OBRAS DE PAVIMENTAÇÃO ASFÁLTICA, DRENAGEM, SINALIZAÇÃO E ILUMINAÇÃO DO ACESSO Á ENTRADA DO PREFEM E NOVO IML EM NOSSA SENHORA DO SOCORRO/SE.

EMPRESA VENCEDORA: SPS RETROFIT E CONSTRUÇÕES EIRELI-ME

<u>VALOR</u>: R\$ 1.063.259,54 (hum milhão sessenta e três mil duzentos e cinquenta nove reais e cinquenta e quatro centavos)

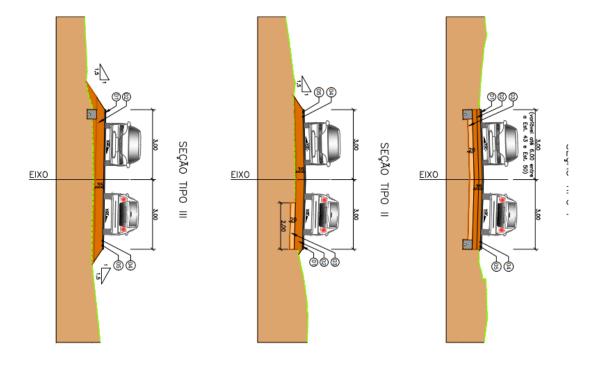
PRAZO DE EXECUÇÃO: 90(noventa) dias

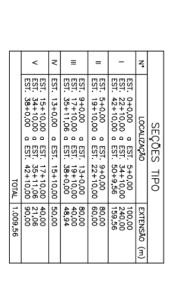
HOMOLOGADA: 03/05/2021

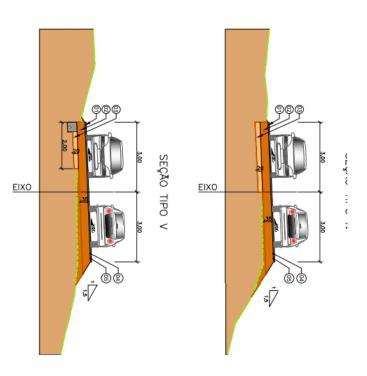
Aracaju, 03/05/2021

Atenea de Moraes Fontes

Presidente da Comissão Permanente de Licitação

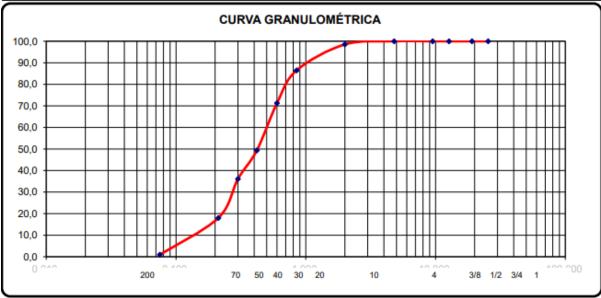

ANEXO 2 – ENSAIO DE SUBLEITO


DENOMINAÇÃO					ACESS	O AO PE	RESÍDIO	FEMIN	INO - PF	REFEM			
LOCALIZAÇÃO					MUNIC	ÍPIO DE	NOSSA	SENHO	RA DO	SOCOR	RO / SE	;	
AMO	OSTR	RA N.	0		1	2	3	4	5	6	7	8	9
FUR	RO N	0			01	01	02	02	03	03	04	04	05
	PRO	FUNI	DIDADE	DE	17	52	17	54	19	57	36	91	13
		(cn	n)	A	40	132	54	212	57	225	91	213	30
		((2"									
4	4	NDC		1"	91	100	84	100	84	100	100	100	85
CLU		(% PASSANDO)	3	1/8"	72	100	64	100	62	100	100	100	65
0.00		(% P	N	V° 4	62	100	56	99	55	100	100	100	57
IN VC		RAS	N	° 10	57	99	52	98	50	100	99	100	54
GRANULOMETRIA	5	PENEIRAS	N	° 40	51	95	45	87	47	93	89	91	44
Ū		Ы	Nº 200		12	78	39	82	43	82	77	85	40
	FAIXA AASHO					F. F.	F. F.	F. F.	F. F.	F. F.	F. F.	F. F.	F. F.
LIMITES FISÍCOS				-	32	28	48	35	50	41	54	31	
LIMITES FISICOS IP			N. P.	11	9	18	12	19	17	21	11		
	EQUIVALENTE DE AREIA				-	1	-		-	1	1	,	,
	ÍNDICE DE GRUPO				0	8	1	13	2	14	11	14	1
		CI	ASSF. H. R.	В.	A-2-4	A - 6	A - 4	A-7-5	A - 6	A-7-5-	A-7-6	A-7-5	A - 6
		S	DENS. MÁX	AMD			1,696			1,583		1,569	1,688
	NORMAL	12 GOLPES	UMIDIDAD	E ÓTIMA			16,5			23,1		24,4	16,7
	NOR	2 GC	I. S. C.				6			3		2	6
	Ш	ī	EXPANSÃO				2,58			3,39		3,48	2,65
		S	DENS. MÁX	AMD	1,939	1,694		1,610	1,715		1,675		
AASHO	ZRM.	LPES	UMIDIDAD	E ÓTIMA	7,0	18,6		21,7	15,8		22,3		
AAS	INTERM.	26 GO	I. S. C.		44	5		3	8		5		
	Ш	2	EXPANSÃO		0,13	1,81		3,17	2,24		2,99		
	00	S	DENS. MÁX	AMD									
	ICAI	TE	UMIDIDAD	E ÓTIMA									
	MODIFICADO	SE GOLPES	I. S. C.										
	Mf	ιΩ	EXPANSÃO										
D	ADO	S	ME "IN SIT	U"(g/m)									
	DE		UMIDADE I	NAT. (%)									
C	AMP	О	GRAU DE C	COMP. (%)									


CONTINUAÇÃO ANEXO 2 - ENSAIO DE SUBLEITO

DENOMINAÇÃO					ACESS	O AO PE	RESÍDIO	FEMIN	INO - PF	REFEM			
LOC	CALIZ	ZAÇĀ	io		MUNIC	ÍPIO DE	NOSSA	SENHO	RA DO	SOCOR	RO / SE	2	
AMO	OSTE	RA N	•		10	11	12	13	14				
FUF	RO N	.0			05	06	06	07	07				
	PRO	FUNI	DIDADE	DE	30	27	116	16	140				
		(cn	n)	Α	205	116	206	42	203				
		0		2"									
41	5	AND		1"	100	100	100	100	100				
ADAMITICOMETER	121	(% PASSANDO)	3	/8"	98	100	100	99	100				
	3	(% P	N	l° 4	96	100	100	98	99				
INVO	KAIN	PENEIRAS	Nº 10		94	99	99	98	99				
Č	5	ENE	N	° 40	89	95	90	89	86				
			N° 200		82	81	73	76	69				
	FAIXA AASHO					F. F.	F. F.	F. F.	F. F.				
	LIMITES FISÍCOS					42	39	37	39				
	IP				18	12	16	13	11				
	EQUIVALENTE DE AREIA				-	-	-	-	-				
	ÍNDICE DE GRUPO				13	9	10	9	7				
L		CI	LASSF. H. R.	A-7-5	A-7-5	A - 6	A - 6	A - 6					
	l , l	S	DENS. MÁX	AMD		1,608	1,591	1,630					
	NORMAL	GOLPES	UMIDIDAD	E ÓTIMA		19,6	21,6	20,4					
	NOF	2 G	I. S. C.			3	3	4					
	Ш	1	EXPANSÃO			2,94	3,29	3,08					
	L	δδ	DENS. MÁX	AMD	1,629				1,698				
SHO	ERM.	OLPES	UMIDIDAD	E ÓTIMA	22,1				18,9				
AA.	INT		I. S. C.		3				6				
	Ш	2	EXPANSÃO		3,23				2,32				
	30	S	DENS. MÁX	ΠMA									
	ICAI)LPE	UMIDIDAD	E ÓTIMA									
	MODIFICADO	SE GOLPES	I. S. C.										
L	M	ιΩ	EXPANSÃO										
D	OADC	S	ME "IN SITU	U"(g/m)									
	DE		UMIDADE I	NAT. (%)									
C	AMF	O	GRAU DE C	COMP. (%)									

ANEXO 3 – SEÇÕES TRANSVERSAIS



ANEXO 4 – CÁLCULO ESTATÍSTICOS DOS RESULTADOS DOS ENSAIOS

c				ATÍSTICO DOS OS OBTIDOS	MÉDIA DOS VALORES	DESVIO PADRÃO	VALOR MÁXIMO	VALOR MÍNIMO
		<u> </u>	2*					
	W.	AND	1"		96	6,8	98	94
GBANIII OMETBIA	de la	ASS/	3/8"		90	16,1	96	84
3	NOTO NOTO	% P	Nº 4		87	19,6	94	81
	KAIN	EIRAS	Nº 10		86	21,3	93	78
GR/		PENEIRAS (% PASSANDO)	Nº 40		78	20,7	85	71
L		Ь	Nº 200		66	22,6	73	58
FAI	XA	DNE	R					
LIMITES FISÍCOS					40	8,0	43	38
	IP			IP	14	3,8	16	13
EQ	EQUIVALENTE DE A		TE DE AREI	IA				
ÍND	ÍNDICE DE GRUPO				8	4,4	9	6
CLASSF		. н. г	R. B.					
CLA			DENS. MÁ	XIMA	2	0,1	2	2
	NORMAL)LPE	UMIDIDAI	DE ÓTIMA	20	3,0	22	19
	NOR	12 GOLPES	I. S. C.		4	1,6	5	3
		1	EXPANSÃ	0	3	0,4	3	3
		S	DENS. MÁ	XIMA	1,7	0,1	1,8	1,7
AASHO	NTERM.	26 GOLPES	UMIDIDAI	DE ÓTIMA	18,1	5,4	20,7	15,4
AAS	INTE	9	I. S. C.		11	15	18	3
		21	EXPANSÃO	0	2,3	1,1	2,8	1,7
	õ	S	DENS. MÁ	XIMA				
	MODIFICADO	S6 GOLPES	UMIDIDAI	DE ÓTIMA				
	DDIF	6 GC	I. S. C.					
	MC	ທົ	EXPANSÃO	0				
Ι	DADO	os	ME "IN SI	ΓU"(g/m)				
	DE		UMIDADE	NAT. (%)				
(CAME	Ю	GRAU DE	COMP. (%)				

ANEXO 5 - ANÁLISE GRANULOMÉTRICA

A		ANÁLISE (GRANULOMÉ	TRICA		
MATERIAL: AREIA	MÉDIA BRANCA		PROCEDÊNCIA: AF	REAL IPANEMA		
LOCALIZAÇÃO: PO	VOADO IPANEMA, ITAPO	RANGA - SE		PROPRIETÁRIO: S	R. LINDEMBERG	
OBRA:				RES	SUMO	
ACESSO AO POVOAD	O PEDREIRAS		PEDREGULHO:	1,46		TOTAL DE AREIA
AMOSTRA N° :	OPERADOR:	DATA:	AREIA GROSSA:	27,25		97,57
1	WELLINGTON	27/05/2020	AREIA MÉDIA:	53,28		
AMOSTRA TOTAL SEC	CA (g):	643,32	AREIA FINA:	17,04		TOTAL GERAL
MÓDULO DE FINURA			ARGILA E SILTE:	0,96		100.00
DEL	NEIRAS		MATERIAL RETIDO		% QUE PASSA	
POLEGADA	mm	PESO - (g)	% DA AMOSTRA TOTAL SECA	% ACUMULADA DE MATERIAL SECO	DA AMOSTRA TOTAL SECA	
t'	25.400	107	SECA		100.00	_
3/4"	19,100				100,00	-
1/2"	12.700		_	_	100.00	
3/8"	9,500		-	-	100,00	
Nº 4	4,800		-	-	100,00	-
Nº 10	2,000	9,42	1,46	1,46	98,54	-
Nº 20	0,850	77,46	12,04	13,50	86,50	-
Nº 30	0,600	97,87	15,21	28,72	71,28	-
Nº 40	0,420	140,80	21,89	50,60	49,40	-
№ 50	0,300	85,56	13,30	63,90	36,10	
№ 70	0,212	116,38	18,09	81,99	18,01	-
Nº 200	0,075	109,63	17,04	99,04	0,96	
FU	INDO	6,20	0,96	100,00		-

