INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE CAMPUS ARACAJU DIRETORIA DE ENSINO COORDENADORIA DE ENGENHARIA CIVIL CURSO DE BACHARELADO EM ENGENHARIA CIVIL

SIMONE TRINDADE DE ARAUJO

ANÁLISE COMPARATIVA ENTRE TUBO DE PEAD E TUBO DE CONCRETO EM
OBRA DE DRENAGEM URBANA EM ARACAJU - SERGIPE

MONOGRAFIA

ARACAJU 2024

SIMONE TRINDADE DE ARAUJO

ANÁLISE COMPARATIVA ENTRE TUBO DE PEAD E TUBO DE CONCRETO EM OBRA DE DRENAGEM URBANA EM ARACAJU - SERGIPE

Monografia apresentada como requisito parcial à obtenção do título de Bacharel, da Coordenação do Curso de Engenharia Civil, do Instituto Federal de Sergipe – Campus Aracaju.

Orientador: Prof. Msc. Louise Francisca Sampaio Brandão

Coorientador: Prof. Msc. Zacarias Caetano

Vieira

ARACAJU 2024

Ficha Catalográfica elaborada pela Bibliotecária: Elizabete T. Ramos - CRB-5/1028. Dados fornecidos pelo(a) autor(a).

Araujo, Simone Trindade de

A658a Análise Comparativa Entre Tubo de Pead e Tubo de Concreto em Obra de Drenagem Urbana de Aracaju-SE. Aracaju/SE. /Simone Trindade de Araujo. – Aracaju, 2024.

79 f. : il.

Orientador : MSc. Louise Francisca Sampaio Brandão. Monografia (Graduação - Bacharelado em Engenharia civil) - Instituto Federal de Sergipe, 2024.

1. Drenagem. 2. Tubo de Pead. 3.Tubo de Concreto Armado. 4. Planejamento. I. Brandão, Louise Francisca Sampaio. II. Título.

CDU 69

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE CAMPUS ARACAJU

CURSO DE BACHARELADO EM ENGENHARIA CIVIL

TERMO DE APROVAÇÃO

Título da Monografia Nº 278

ANÁLISE COMPARATIVA ENTRE TUBO DE PEAD E TUBO DE CONCRETO EM OBRA DE DRENAGEM URBANA EM ARACAJU - SERGIPE

SIMONE TRINDADE DE ARAÚJO

Esta monografia foi apresentada às <u>0 g h 40</u> do dia <u>0 8</u> de <u>jantito</u> de 20<u>24</u> como requisito parcial para a obtenção do título de BACHAREL EM ENGENHARIA CIVIL. O candidato foi arguido pela Banca Examinadora composta pelos professores abaixo assinados. Após deliberação, a Banca Examinadora considerou o trabalho aprovado.

Prof. Dr. José Resende Góes

(IFS - Campus Aracaju)

Tatiana haximo Almeida Albuque que Prof^a. Dr^a. Tatiana Maximo Almeida Albuquerque

(IFS - Campus Aracaju)

Prof. M.Sc. Louise Francisca Sampaio
Brandão

(IFS - Campus Aracaju)
Orientador

Prof. M.Sc. Zacarias Caetano Vieira

(IFS – Campus Aracaju) Coorientador

Prof. Dr. Pablo Gleydson de Sousa

(IFS - Campus Aracaju)

Coordenador da COEC

AGRADECIMENTOS

Agradeço a Deus por guiar e proporcionar entendimento ao longo dos anos, orientando minhas escolhas e mudanças ao longo da minha jornada acadêmica e pessoal.

À minha avó, Helena, agradeço por sua valiosa contribuição através de ensinamentos e pelo investimento na minha educação ao longo dos anos, bem como por tantos outros gestos significativos que fez e continua a fazer por mim. Sem o seu apoio, não teria alcançado o nível em que me encontro hoje.

Aos meus pais, com especial reconhecimento à minha mãe, Acácia, por jamais medir esforços para concretizar meus sonhos. A senhora foi meu apoio crucial quando decidi por trocar de curso e permanece como um pilar fundamental em minha trajetória.

Aos meus irmãos, sobrinhos, tios, primos, em especial ao meu irmão Mateus, primos Junior e Erivaldo, agradeço por sempre me ajudarem nas dificuldades e por suportarem meus momentos de desafio. Às minhas tias Luzia, Angélica, Virginia (*in memorian*) e meu tio Carlos, agradeço por sempre me apoiarem, incentivarem e ajudarem. Sem o apoio deles, o desafio seria mais árduo.

À minha orientadora Msc. Louise Francisca Sampaio Brandão e meu coorientador Msc. Zacarias Caetano Vieira, expresso minha gratidão pelos ensinamentos, prestatividade e sabedoria com que guiaram nesta trajetória.

Aos amigos e colegas que tornaram essa jornada mais fácil, agradeço por tornarem o aprendizado mais leve. E à minha amiga Daisy, um presente que a UFS me proporcionou, agradeço por sempre estar do meu lado, incentivando-me e sendo uma ajuda constante.

Enfim, a todos que, por algum motivo, contribuíram para a realização desta pesquisa, meu sincero agradecimento.

RESUMO

ARAUJO, Simone Trindade de. **Análise comparativa entre tubo de PEAD e tubo de concreto em obra de drenagem urbana em Aracaju - Sergipe**. 79f. Monografia (Bacharelado em Engenharia Civil) – Instituto Federal de Educação, Ciência e Tecnologia de Sergipe – Campus Aracaju. 2024.

Historicamente tem-se utilizado tubos de concreto na execução de redes de drenagem urbana. Entretanto, nos últimos anos, têm surgido no mercado novos materiais com maior apelo tecnológico, dentre eles, os tubos de Polietileno de Alta Densidade (PEAD). Diante do exposto, este trabalho tem como objetivo realizar um estudo comparativo entre tubos de concreto e PEAD em uma obra de drenagem urbana na cidade de Aracaju/SE. Inicialmente foi realizada uma revisão bibliográfica sobre o assunto. Com base em planilhas e projetos fornecidos por uma empresa que executa esse tipo de obra na cidade, foram levantados os quantitativos de serviços (escavação, escoramento, apiloamento, execução do tubo e reaterro) considerando cada tipo de tubo. Em seguida, com base em índices e produtividades constantes no ORSE, SINAPI, SEINFRA e TCPO, foram elaborados o orçamento, cronograma e plano de execução do serviço para cada caso. Os resultados mostram que a obra com tubos de concreto apresentou um custo total de R\$ 1.563.359,26, com duração de 192 dias; e a obra com tubo de PEAD resultou em um custo total de R\$ 2.630.870,15 com duração de 113 dias. Conclui-se que financeiramente os tubos de concreto se mostraram mais viáveis, entretanto, analisando aspectos com tempo de execução da obra e características técnicas, os tubos de PEAD mostram-se mais adequados. Espera-se que um aumento no número de fabricantes e fornecedores impulsione a competitividade no mercado, reduzindo os custos dos tubos de PEAD, e permitindo que se aproveitem todas as vantagens desse material.

Palavras-chave: Drenagem; Tubo de PEAD; Tubo de Concreto Armado; Planejamento.

ABSTRACT

ARAUJO, Simone Trindade de. *Comparative analysis between HDPE pipe and concrete pipe in urban transport work in Aracaju - Sergipe.* 79f. *Monography* (Bacharelado em Engenharia Civil) – Instituto Federal de Educação, Ciência e Tecnologia de Sergipe – Campus Aracaju. 2024.

Historically, concrete pipes have been used to build urban drainage networks. However, in recent years, new materials with greater technological appeal have appeared on the market, including High Density Polyethylene (HDPE) tubes. In view of the above, this work aims to carry out a comparative study between concrete pipes and HDPE in an urban drainage project in the city of Aracaju/SE. Initially, a bibliographical review was carried out on the subject. Based on spreadsheets and projects provided by a company that carries out this type of work in the city, the quantity of services (excavation, shoring, piling, pipe execution and backfilling) were collected considering each type of pipe. Then, based on indices and productivity contained in ORSE, SINAPI, SEINFRA and TCPO, the budget, schedule and service execution plan were prepared for each case. The results show that the work with concrete pipes had a total cost of R\$ 1,563,359.26, lasting 192 days; and the work with HDPE pipe resulted in a total cost of R\$2,630,870.15 lasting 113 days. It is concluded that concrete pipes proved to be more viable financially, however, analyzing aspects such as construction execution time and technical characteristics, HDPE pipes appear to be more suitable. An increase in the number of manufacturers and suppliers is expected to boost market competitiveness, reducing the costs of HDPE pipes, and allowing the full advantages of this material to be taken advantage of.

Keywords: Drainage; PEAD Tube; Reinforced Concrete Tube; Planning.

LISTA DE ILUSTRAÇÕES

Figura 1 - Ciclo Hidrológico	17
Figura 2 - Sarjeta	21
Figura 3 - Sarjetão	21
Figura 4 - Meio Fio	22
Figura 5 - Boca de Lobo	22
Figura 6 - Galeria de Concreto Armado	23
Figura 7 - Poço de Visita	24
Figura 8 - Execução de galeria de macrodrenagem	25
Figura 9 - Semicorte longitudinal típico de tubos com encaixe macho e fême	ea e bolsa
	26
Figura 10 - Métodos de assentamento	29
Figura 11 - Assentamento de PV com a junta rígida	30
Figura 12 - Tubo Corrugado em PEAD	33
Figura 13 – Assentamento de tubo PEAD com diâmetro até 450 mm	34
Figura 14 – Assentamento de tubo PEAD com Escavadeira para diâmetro d	lesde 500
mm	34
Figura 15 - Assentamento de tubo PEAD com Escavadeira e Cinta	oara com
diâmetro desde 500 mm	35
Figura 16 – Assentamento de tubo PEAD com diâmetro desde 500 mm	35
Figura 17 - Exemplos de estocagem de tubos	36
Figura 18 - Escoramento de Vala	38
Figura 19 - Etapas de Reaterro da vala	39
Figura 20 - Esquema de Pavimentação de Paralelepípedo	41
Figura 21 - Execução de Pavimentação Asfáltica	41
Figura 22 - Ilustração da área dimensionada para implantação do tubo na	a rede de
drenagem	47

LISTA DE TABELAS

Tabela 1 - Compressão diametral dos tubos simples2	27
Tabela 2 - Compressão diametral dos tubos de concreto reforçados com fibras o	u
armados com reforço secundário de fibras2	27
Tabela 3 - Altura de Empilhamento3	32
Tabela 4 - Largura de Vala para Tubo de PEAD3	36
Tabela 5 - Largura de Vala para Tubo de Concreto Armado3	37
Tabela 6 - Método recomendado para manuseio de tubulação4	Ю
Tabela 7 - Dimensões dos tubos para água pluvial com encaixe ponta e bolsa4	19
Tabela 8 - Recobrimento de tubulações por tipo de pavimento (sistema d	Я
drenagem)4	19
Tabela 9 - Custo Unitário dos serviços para Tubo de Concreto5	51
Tabela 10 - Custo Unitário dos serviços para Tubo de PEAD5	52
Tabela 11 - Consumo de insumos para escavação mecanizada de vala em solo d	Я
1° categoria (Unidade: m³)5	53
Tabela 12 - Consumo de insumos para escoramento contínuo com prancha metálic	a
(Unidade: m²)5	53
Tabela 13 - Consumo de insumos para apiloamento de fundo de vala com maço d	le
40kg a 60 kg (Unidade: m²)5	53
Tabela 14 - Consumo de insumos para execução de rede de drenagem com tubo d	le
concreto, rejuntado com argamassa de cimento e areia (Unidade: m)5	54
Tabela 15 - Consumo de insumos para execução de Tubo de PEAD, junta rígida	a,
fornecimento e assentamento (Unidade: m)5	54
Tabela 16 - Consumo de insumos para execução de reaterro mecanizado de val	la
empregando compactador de placa vibratória (Unidade: m³)5	54
Tabela 17 - Volume de Escavação de Vala (m³)5	57
Tabela 18 - Custo para Escavação de Vala (R\$)5	57
Tabela 19 – Área de Escoramento de Vala Continuo (m²)5	58
Tabela 20 – Área de Apiloamento de Fundo de Vala (m²)5	58
Tabela 21 - Custo para Escoramento e Apiloamento de Vala (R\$)5	59
Tabela 22 - Assentamento de Tubo (Und)5	59
Tabela 23 - Orçamento para Fornecimento e Assentamento de Tubo (R\$)6	06

Tabela 24 – Volume de Reaterro de Vala (m³)	60
Tabela 25 - Reaterro de Vala (R\$)	60
Tabela 26 - Quantitativo das atividades para execução da drenagem por tube	o de
concreto e tubo de PEAD	62
Tabela 27 - Duração das atividades para execução da drenagem por tubo	o de
concreto e tubo de PEAD (Unidade: Dias)	63
Tabela 28 - Recursos das atividades para execução da drenagem por tubo	o de
concreto e tubo de PEAD	64

Sumário

1	INTRODUÇÃO	12
2	OBJETIVOS	14
2.1	Objetivo Geral	14
2.2	Objetivos Específicos	14
3	FUNDAMENTAÇÃO TEÓRICA	15
3.1	Sistema Pluvial Urbano	15
3.2	Hidrologia	16
3.3	Drenagem Urbana	17
3.3.1	Microdrenagem Urbana	19
3.3.1.1	l Elementos Básicos dos Fatores Hidrológicos de Microdrenagem Urbana	19
3.3.1.2	2Elementos Básicos de um Sistema de Microdrenagem Urbana	20
3.3.2	Macrodrenagem Urbana	24
3.4	Tubo de Concreto Armado	25
3.4.1	Assentamento de Tubo	28
3.4.2	Juntas	29
3.4.2.1	1 Junta Elástica	30
3.4.2.2	2 Junta Rígida	30
3.4.3	Armazenamento de Tubo de Concreto Armado	31
3.5	Tubo de PEAD	32
3.5.1	Método de Instalação	34
3.5.2	Armazenamento de Tubo de PEAD	35
3.6	Escavação de Vala	36
3.7	Escoramento	37
3.8	Reaterro	38
3.9	Transporte	39
3.10	Pavimentação	40
3.10.1	Pavimentação em Paralelepípedo ou Bloco	40
3.10.2	Pavimentação Asfáltica	41
3.11	Análise da Viabilidade Econômica	42
3.11.1	Elaboração de um Cronograma Físico Financeiro	45
3.12	Análise da Viabilidade Técnica	45
4	METODOLOGIA	47
4.1	Análise Comparativa dos Custos	48

4.2	Análise Comparativa de Cronograma e Execução	52
4.3	Análises da Viabilidade Técnica	56
5	RESULTADOS E DISCUSSÕES	57
5.1	Análise da Viabilidade Econômica	57
5.2	Análises do Cronograma e Plano de Execução	62
5.3	Análises da Viabilidade Técnica	66
6	CONCLUSÃO	69
REFE	RÊNCIAS	70
	IDICE A – QUADRO DE DURAÇÃO/ RECURSO : DRENAGEM COM TUB ONCRETO	OS 74
APÊN DE PE	IDICE B – QUADRO DE DURAÇÃO/ RECURSO : DRENAGEM COM TUB EAD	OS 76
	DICE C - DIAGRAMA DE GANTT PARA DRENAGEM COM TUBOS	DE 78
APÊN PEAD	DICE D - DIAGRAMA DE GANTT PARA DRENAGEM COM TUBOS	DE 79

1 INTRODUÇÃO

A gestão eficaz do sistema de drenagem urbana desempenha um papel crucial no contexto da urbanização. Em muitos casos, sua eficácia é prontamente questionada após eventos de precipitação intensa, gerando transtornos para a população (Marrota, 2022). A execução ideal dos projetos, canalização adequada, (com tubos de PEAD ou concreto), e a utilização de mão de obra qualificada, são elementos fundamentais para assegurar a eficiência do projeto e evitar custos excessivos.

A adoção dos tradicionais tubos de concreto persiste ao longo das décadas devido à sua disponibilidade em diversos diâmetros comerciais, e custos acessíveis (Maurer, 2019). Isso os torna uma escolha vantajosa aos olhos da maioria dos construtores e engenheiros. No entanto, é importante reconhecer que essas tubulações apesar das vantagens, apresentam desvantagens consideraveis. Como o peso e manuseio, que devido seu material torna-se mais pesados, dificultando o manuseio. Além do alto potencial de corrosão que pode comprometer a integridade estrutural do concreto, resultando em vazamentos.

A construção industrializada representa uma modernização significativa na construção civil brasileira, especialmente em projetos de drenagem urbana de grandes dimensões com prazos reduzidos. No contexto da drenagem urbana, essa evolução trouxe consigo uma inovação tecnológica para o Brasil, que são os tubos em polietileno de alta densidade (PEAD), notáveis pela eficiência na produtividade, com isso reduzindo o prazo de execução, além de redução de desperdícios nos canteiros de obras e serem mais leves e flexíveis que o torna mais fácil o manuseio e instalação (Tigre ADS, 2018; Marrota, 2022). Com isso, apresenta-se como uma valiosa alternativa para projetos de infraestrutura, podendo substituir os tubos convencionais de concreto.

Os tubos de PEAD têm ganhado destaque em diversas cidades pelo Brasil. Na cidade de Barreiras em Salvador, esses tubos demonstraram a capacidade de reduzir significativamente o cronograma de execução das obras, devido ao menor consumo de mão de obra e equipamentos, tornando-se uma opção mais econômica quando comparada aos tubos de concreto. Já na Rua Vila Rica em Belo Horizonte, a utilização de tubos de PEAD proporcionou resultados beneficos como alta

durabilidade, ausência de vazamentos, elevado grau de eficiência (Tigre ADS, 2018; Prates, 2023).

A escolha desse tema é fundamental no atual cenário da drenagem urbana em Aracaju, que demanda uma abordagem cuidadosa para o crescimento sustentável da cidade e eficiência no processo de execução. Assim, o presente trabalho visa apresentar o tubo de PEAD como uma tecnologia em ascensão ao longo dos últimos anos, explorando suas características e a possibilidade de substituição dos tubos de concreto por essa nova técnica, através de uma análise comparativa entre esses dois materiais em um projeto de drenagem urbana na cidade de Aracaju/SE.

2 OBJETIVOS

2.1 Objetivo Geral

Realizar uma análise comparativa entre o uso de tubos de PEAD e tubos de concreto armado em um projeto de drenagem urbana na cidade de Aracaju, com o intuito de destacar suas vantagens técnicas e econômicas.

2.2 Objetivos Específicos

- Efetuar uma análise comparativa dos custos de execução em um projeto de drenagem urbana, considerando o uso de tubos de concreto armado em contraste com tubos de PEAD, através do software ORSE e SEINFRA.
- Realizar uma comparação entre os cronogramas e planos de execução para obra de drenagem urbana, levando em consideração a utilização de tubos de concreto armado e tubos de PEAD, através do diagrama de Gantt.
- Avaliar a viabilidade técnica através de critérios como abrasão, eficiência hidráulica, vida útil, resistência a impactos, do emprego de tubos de PEAD em um projeto de drenagem, com foco na análise de suas vantagens e desvantagens em relação aos tubos de concreto armado.

3 FUNDAMENTAÇÃO TEÓRICA

3.1 Sistema de Drenagem Urbana

De acordo com Pinto e Ribeiro Junior (2017), o sistema de drenagem urbana é um conjunto de estruturas e infraestruturas projetadas para gerenciar o escoamento da água das chuvas em áreas urbanas desempenhando um papel crucial, pois quando projetado corretamente, traz uma série de vantagens para a sociedade. Esses benefícios incluem o aprimoramento da saúde pública, aumento da qualidade de vida da população e redução dos riscos de desastres sociais causados por inundações.

O escoamento das águas dos sistemas pluviais urbanos ocorre por meio do pavimento, canais naturais e sistemas de condutos e canais. No entanto, quando o escoamento ultrapassa suas áreas designadas, ocorrem inundações, o que representa o principal impacto na sociedade (Tucci, 2009).

A finalidade dos projetos de sistema pluvial é oferecer soluções tecnicamente viáveis para lidar com os problemas causados pelas águas das chuvas, a fim de evitar que volumes excessivos escoem pelas vias e causem alagamentos no local. Esses alagamentos afetam residências, pedestres, prejudicam o trânsito e podem causar erosão, além de criar condições propícias para o acúmulo de lixo e o surgimento de doenças infecciosas (Marotta, 2022).

Segundo Tucci (2009), a importância da hidrologia se torna evidente ao considerar o papel fundamental da água na vida dos seres vivos. Através dos fenômenos hidrológicos, como a chuva e o escoamento superficial, pode-se observar a ocorrência de eventos catastróficos, como enchentes e estiagens. Esses eventos ocorrem pela falta de gestão e planejamento de riscos.

Compreender os fenômenos hidrológicos relacionados ao ciclo da água na natureza é essencial para várias aplicações na engenharia, especialmente em projetos de drenagem pluvial.

3.2 Hidrologia

A hidrologia é um campo de estudo da ciência dedicado à análise da água presente na natureza, incluindo sua ocorrência, circulação e distribuição. Além disso, a hidrologia abrange a pesquisa das propriedades físicas e químicas da água, bem como sua relação com o meio ambiente (Azevedo Netto, 1998).

De acordo com Tucci (2009), a hidrologia é um campo de estudo que se dedica à análise dos comportamentos físicos da água em uma determinada bacia hidrográfica. Além disso, a hidrologia busca quantificar os recursos hídricos ao longo do tempo e avaliar o impacto das modificações da bacia hidrográfica sobre os processos hídricos.

A água é encontrada em diferentes estados físicos (sólido, líquido e gasoso), e o seu processo de evaporar da superfície oceânica e retornar para ela, é chamado ciclo hidrológico. Conforme descrito por Pinto et al. (2017), o ciclo hidrológico é um fenômeno de circulação da água que envolve mudanças de estado ou posição em relação à Terra. Ele é composto por elementos-chave, como precipitação, infiltração, escoamento superficial e evaporação, que atuam em conjunto para manter uma distribuição adequada da água ao longo do tempo.

A precipitação ocorre quando as nuvens contendo umidade (vapor de água) e partículas de condensação (como poeira ou gelo) se unem, formando gotas de água em quantidade, tamanho e peso adequado para que a força da gravidade vença as turbulências presentes na atmosfera (Tucci, 2009).

O escoamento superficial refere-se ao deslocamento da água na superfície do solo, impulsionado pela gravidade, assim formando fluxos definidos. Este processo é fundamental para o estudo das inundações. (Miguez; Veról; Rezende, 2015).

A evaporação ocorre quando a água, em seu estado líquido, passa para o estado gasoso através da energia recebida do Sol ou outra fonte de calor. Através do processo de evaporação, é possível manter o equilíbrio do ciclo hidrológico (Pinto *et al.*, 2017), conforme é apresentado na Figura 1.

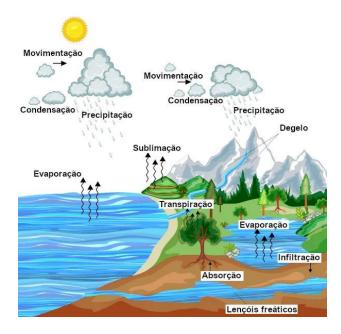


Figura 1 - Ciclo Hidrológico

Fonte: Santos (2023)

3.3 Drenagem Urbana

Nos últimos anos a drenagem urbana das grandes cidades foi debatida no Brasil e no mundo de forma acessória, levando em consideração o parcelamento do solo para utilização urbana. Mas percebe-se que o avanço da drenagem urbana não ocorreu de forma acelerada como a urbanização, tal fato pode ser observado no aumento de enchentes nas metrópoles. Isso acontece porque a água da chuva não encontra um caminho para escoar já que a drenagem não foi apontada como fator predominante no gerenciamento da expansão (Marotta, 2022).

Embora a drenagem urbana seja garantida como um direito pela Lei nº 11.445/2007, nem toda a população brasileira possui acesso a esse serviço, seja devido à deficiência dos sistemas implantados, ou devido à abrangência ainda insuficiente em muitos locais do país (ANA, 2020).

A intensificação da urbanização interfere diretamente com a drenagem urbana visto que sobrecarrega o sistema, aumentando o risco de inundações e impactos negativos. O planejamento adequado da drenagem urbana é essencial para lidar com o crescimento urbano, implementando infraestruturas eficientes que minimizem os danos causados por alagamentos e que garantam um desenvolvimento urbano sustentável, resiliente e harmonioso. A integração da drenagem urbana no processo de urbanização é fundamental para garantir uma gestão adequada da água e

proteger a sociedade das consequências adversas das enchentes urbanas (Tucci, 2009).

Segundo Marotta (2022) a drenagem urbana é um sistema de manuseio e gerenciamento das águas pluviais, sendo tratadas em duas dimensões: microdrenagem e macrodrenagem. Tendo como objeto diminuir danos causados por inundações através de proposta integrada ao desenvolvimento urbano e diminuir os perigos a que a sociedade está subordinada.

Conforme Tucci (2009), drenagem urbana é o termo empregado para designar um conjunto de critérios com o objetivo de diminuir os riscos enfrentados pela sociedade, minimizando os danos causados por inundações e promovendo um desenvolvimento urbano sustentável, equilibrado e coordenado.

Neste sentido, a elaboração de um plano diretor desempenha um papel crucial na gestão urbana, principalmente na drenagem urbana. Ao incorporar diretrizes específicas para a infraestrutura de drenagem, o plano diretor garante um desenvolvimento urbano ordenado e sustentável, visto que se constitui de medidas e práticas indispensáveis para alcançar resultados satisfatórios na drenagem urbana.

A integração da drenagem urbana no plano diretor é essencial para promover cidades resilientes, protegendo a população e os recursos naturais dos impactos negativos das chuvas intensas e do crescimento urbano desordenado. Além disso, para conseguir soluções eficazes na implantação e funcionamento dos sistemas de drenagem urbana, devem-se seguir alguns fatores importantes. Isso inclui desenvolver campanhas nas instituições de educação, visando esclarecer como o público pode ajudar, domínio das novas tecnologias para auxiliar no planejamento e execução de uma diretriz para ocupação do solo urbano interligada com a política da drenagem urbana (Canholi, 2016).

De acordo com o Plano Diretor da cidade de Aracaju (Aracaju, 2000), é necessário propor orçamentos adequados para a manutenção dos canais e galerias que compõem o sistema de drenagem pluvial. Além disso, o plano deve aplicar penalidades para as conexões indevidas de esgoto sanitário diretamente na rede de drenagem, determinar o uso e ocupação adequados do solo, considerando uma taxa de impermeabilização que permita a infiltração adequada das águas pluviais e facilite a drenagem e o escoamento. Também é importante antecipar e declarar as áreas para futuras construções de redes de macrodrenagem na expansão urbana. As obras de infraestrutura de drenagem devem ser projetadas de forma a garantir

uma qualidade de vida eficiente para os residentes, além de serem economicamente viáveis e de rápida execução, a fim de minimizar os transtornos para a sociedade.

3.3.1 Microdrenagem Urbana

No Brasil, a responsabilidade pela infraestrutura básica de microdrenagem é, institucionalmente, atribuída aos municípios. Isso engloba a realização de atividades como terraplenagem, construção de sarjetas, galerias de águas pluviais, pavimentação e obras de contenção de encostas, com a finalidade de minimizar os riscos e melhorar a infraestrutura urbana. Conforme a importância dessas questões aumenta, a competência pode passar para os governos estaduais (Miguez; Veról e Rezende, 2015).

A microdrenagem é um sistema de condutos em área de loteamento ou de rede primária urbana, desenvolvida localmente para captação distribuída dos escoamentos superficiais concebidas pelos territórios urbanos, destinados a receber e transportar águas pluviais de lotes, construções, ruas e praças (Miguez; Veról e Rezende, 2015).

Conforme descrito por Tucci (2009), a microdrenagem é aplicada em áreas onde o escoamento natural da água não é claramente definido e acaba sendo influenciado pela ocupação do solo. Em ambientes urbanos, a microdrenagem é principalmente determinada pelos traçados das ruas.

3.3.1.1 Elementos Básicos dos Fatores Hidrológicos de Microdrenagem Urbana

Segundo Azevedo Netto (1998) existe quatros fatores hidrológicos que devem ser estudados para a construção de um projeto de microdrenagem: recorrência, tempo de concentração, coeficiente de escoamento superficial e intensidade.

a) Recorrência

De acordo com Tucci (2009), recorrência ou tempo de retorno é o intervalo de tempo médio entre eventos ou ocorrência de eventos que é igualado ou excedido. Trata-se de determinar o nível de risco aceitável pela sociedade.

Sobre a relação entre microdrenagem e ocorrência de alagamentos, pode-se afirmar que:

Sendo o objetivo da microdrenagem a solução para o escoamento das vazões de chuvas mais frequentes, portanto baixa recorrência e baixa intensidade é admitida a ocorrência de alagamentos pontuais, quando aumenta a intensidade da chuva (Azevedo Netto,1998,p.544).

b) Tempo de Concentração

Para Canholi (2016), o tempo de concentração é o período de tempo necessário para que a água escoe desde o ponto mais afastado de uma bacia hidrográfica até o ponto de saída, considerando o tempo de percurso ao longo das superfícies e redes de drenagem.

c) Coeficiente de Escoamento Superficial

Conforme Azevedo Netto (1998) o coeficiente de escoamento superficial é uma medida que indica a fração da precipitação que se torna escoamento superficial, ou seja, a quantidade de água que não é absorvida ou infiltrada pelo solo e flui diretamente sobre a superfície.

d) Intensidade

Em Tucci (2009), a intensidade é definida como a taxa de precipitação de água por unidade de tempo, expressa em milímetros por hora. A intensidade da chuva varia de acordo com a região, estação do ano e as características climáticas locais.

3.3.1.2 Elementos Básicos de um Sistema de Microdrenagem Urbana

Para Miguez; Veról; Rezende (2015), o sistema de microdrenagem é composto por alguns elementos básicos do sistema pluvial como sarjeta, sarjetão, meio fio, boca de lobo, galerias, poços de visitas.

a) Sarjeta

São faixas de via pública, paralelas e que beiram o meio fio, usualmente executadas em concreto, podendo ser pré-moldadas ou executadas *in loco*. O nível deve estar abaixo da via, visando conduzir a água para as bocas de lobo (Andrade, 2022), conforme é apresentado na Figura 2.

30 5 SARJETA PAVIMENTO

10 12 40

Figura 2 - Sarjeta

Fonte: Tetracon (2021)

b) Sarjetão

São calhas de seção triangulares situadas nos cruzamentos de via pública, destinadas a coletar e orientar as águas superficiais da área pavimentada que irá escoar na sarjeta (Azevedo Netto, 1998). Na Figura 3 é apresentado o esboço de um sarjetão.



Figura 3 - Sarjetão

Fonte: Nunes (2016)

c) Meio Fio

São elementos feitos de pedra e concreto que demarcam o rebaixamento entre o passeio e a via pública, onde sua face superior se encontra no mesmo nível da calçada e simétrico ao eixo da rua (Tucci, 2009). Na Figura 4 é exibida à ilustração do meio fio.

Figura 4 - Meio Fio

Fonte: Brandi (2023)

d) Boca de Lobo

São instrumentos situados em espaços convenientes nas sarjetas para captação das águas pluviais, que devem ser colocados em pontos baixos das quadras, em cruzamentos e em pontos intermediários das vias (Azevedo Netto, 1998), conforme é apresentado na Figura 5.

Figura 5 - Boca de Lobo

Fonte: A autora (2023)

Ao desenvolver um projeto de drenagem, é fundamental ter cuidado ao determinar a localização das bocas de lobo. Gribbin (2017) cita alguns desses cuidados em relação às bocas de lobo:

- Posicionar em áreas de baixa elevação, para coletar eficientemente o escoamento de água, sendo um aspecto crucial para um projeto de coleta pluvial bem-sucedido.
- Considerar o nivelamento adequado das bocas de lobo, garantindo que estejam instaladas em locais onde o escoamento possa entrar facilmente.
- O espaçamento entre as bocas de lobo também é importante, recomendando adotar um espaçamento máximo de 60 m, pois elas devem estar próximas o suficiente para evitar que uma única boca de lobo receba uma vazão maior do que sua capacidade de engolimento (Tomaz, 2015).
- A mudança de direção nas estruturas pode ser necessária para prevenir obstruções nos pontos de curva, garantindo o bom funcionamento do sistema de drenagem.

e) Galerias

São canais públicos subterrâneos reservados a transportar o escoamento das águas pluviais resultantes das bocas de lobo. Podem ser fabricadas por diversos materiais como concreto, PVC e PEAD (Andrade, 2022). Na Figura 6 é apresentada a execução de uma galeria de concreto armado.

Figura 6 - Galeria de Concreto Armado

Fonte: A autora (2023)

f) Poço de Visita

São tanques visitáveis com o objetivo de permitir acesso ao sistema de galerias, servindo para realizar mudanças de direção, declividade, diâmetro, inspeção e desobstrução, e limpeza das tubulações (Azevedo Netto, 1998), como está apresentada na Figura 7.

Figura 7 - Poço de Visita

Fonte: Construmarket (2023)

3.3.2 Macrodrenagem Urbana

Macrodrenagem são as obras e sistemas de drenagem urbana executados em seguimento às redes de microdrenagem, ou seja, correspondem às obras de maior porte, recebendo as contribuições de vazões pluviais já coletadas, assim geralmente são construções de maior custo de implantação.

Segundo Azevedo Netto (1998), a macrodrenagem consiste em obras que consideram a área total das bacias, o escoamento natural, a ocupação de fundos de vala, cursos d'água urbanos, visando sempre os pontos de vista social para solucionar os problemas da área.

Nessa mesma linha Tucci (2009), indica que a macrodrenagem refere-se às intervenções realizadas em fundo de vale para captar as águas pluviais de regiões que podem incluir tanto a microdrenagem quanto outras áreas. Essas intervenções ocorrem mesmo quando o escoamento nos vales não é influenciado pela existência do curso de água perene.

As obras de macrodrenagem têm como objetivo prevenir enchentes causadas por bacias urbanas, através de construções de canais, revestidos ou não, bueiros, galerias de maior porte e tubulões. Maurer (2019) apresentou a instalação de duas

galerias paralelas com dimensões de 3,00 m x 2,00 m, na cidade de Portão - RS, como é apresentada na Figura 8.

Figura 8 - Execução de galeria de macrodrenagem

Fonte: Maurer (2019)

3.4 Tubo de Concreto Armado

No Brasil, os tubos de concreto armado são amplamente empregados em obras de drenagem pluvial devido à sua fácil obtenção, variedade de diâmetros, durabilidade, resistência mecânica e preço acessível. Com uma longa tradição e confiança em seu uso para escoamento de águas pluviais, esses tubos são facilmente adquiridos no mercado, tornando-se a opção preferida pela maioria dos construtores e engenheiros (Marotta, 2022).

Para Andrade (2022), os tubos de concreto apresentam como vantagem uma capacidade intrínseca de resistir aos esforços resultantes das cargas que atuam sobre o sistema, garantindo sua estabilidade e confiabilidade. Além disso, sua elevada resistência mecânica permite que suportem cargas significativas sem sofrer danos. Sua capacidade de resistir à exposição solar sem perder suas propriedades mecânicas, torna-o adequado para uso em ambientes externos. Além disso, é amplamente disponível no mercado, proporcionando facilidade na obtenção. O custo relativamente baixo do tubo de concreto o torna uma opção acessível para projetos de drenagem e outras aplicações, oferecendo uma relação custo-benefício vantajosa.

Segundo a NBR 8890 (ABNT, 2020), a fabricação dos tubos de concreto deve garantir que eles possuam arestas claramente definidas e sejam produzidas por meio de processos industriais. No final, os tubos devem apresentar características como: resistência mecânica, permeabilidade, estanqueidade, absorção, dimensão e acabamento. Além dessas características, devem possuir um formato de seção circular, que são fortalecidos com reforço estrutural através da utilização de barras ou telas de aço soldadas. Deve-se tomar muito cuidado com a escolha dos materiais utilizados na fabricação dos tubos devido às agressividades do meio interno e externo onde serão assentados os tubos. Esses cuidados e especificações são muito importantes para assegurar a qualidade e o desempenho adequado dos tubos de concreto.

É sabido que a mesma norma supracitada estabelece dois tipos de encaixes para tubos (Figura 9), os quais devem seguir os modelos apresentados na própria norma, pois o cumprimento desses padrões assegura a eficiência do sistema. Sabese também que existem dois parâmetros relevantes para tubos de concreto: os diâmetros comerciais e as classes de resistência. A classe de resistência é um indicativo da capacidade da peça de suportar carga, ou seja, sua resistência estrutural. Quanto maior a resistência, maior será o número da classificação, que representa a quantidade de carga suportada, e não está relacionado à quantidade ou tipo de armadura de aço presente no interior do tubo.

b) Encaixe ponta e bolsa

Figura 9 - Semicorte longitudinal típico de tubos com encaixe macho e fêmea e bolsa

Fonte: NBR 8890 (ABNT, 2020)

A nomenclatura utilizada para os tubos de concreto é determinada com base em sua finalidade, classe de resistência e presença de reforço estrutural, que indica

a) Encaixe macho e fêmea

se o tubo possui armadura de aço. A norma NBR 8890 (ABNT, 2020) apresenta duas opções de reforços possíveis, sendo eles:

- a) Tubo simples, sem reforço estrutural;
- b) Tubo de concreto armado, reforçados com fibras ou armados com reforço secundário de fibras.

Na Tabela 1 a seguir é apresentada a compressão diametral dos tubos simples.

Tabela 1 - Compressão diametral dos tubos simples

DN	Água I	Pluvial
	Força mínima de ruptura kN/m	
Classe	PS1	PS2
200	16	24
300	16	24
400 ^a	16	24
500	20	30
600 b	24	36

^a Para tubos simples com diâmetro igual ou menor que 400 mm, a força mínima de ruptura é a correspondente a este valor.

Fonte: Adaptado da NBR 8890 (ABNT, 2020)

Na Tabela 2 a seguir é apresentada a compressão diametral dos tubos de concreto armado, reforçados com fibras ou armados com reforço secundário de fibras.

Tabela 2 - Compressão diametral dos tubos de concreto reforçados com fibras ou armados com reforço secundário de fibras

(contínua)

		Água p	oluvial	
DN		Força mínima isenta de fissura kN/m		a de ruptura ^b I/m
Classe ^a	PA1	PA2	PA1	PA2
400	16	24	24	36
600	24	36	36	54

^b Tubos com diâmetro nominal acima de 600 mm devem ser armados, reforçados com fibras de aço ou armados com reforço secundário de fibras de aço.

(conclusão)

		Água p	oluvial	
DN		Força mínima isenta de fissura kN/m		a de ruptura ^b N/m
800	32	48	48	72
1000 ^c	40	60	60	90
1200	48	72	72	108

^a Para classes superiores a PA4 e EA4 devem ser utilizadas galerias celulares de seção retangular de acordo com a ABNT NBR 15396.

Fonte: Adaptado da NBR 8890 (ABNT, 2020)

3.4.1 Assentamento de Tubo

Segundo a NBR 17015 (ABNT, 2023), os tubos de concreto devem ser instalados (Figura 10) na vala de acordo com certas diretrizes:

- a) Caso o solo do fundo da vala seja instável, como solo coesivo mole ou granular fofo, é necessário substituí-lo por novo solo, com espessura mínima de 0,15 m;
- b) Em situações em que o fundo da vala atinja o lençol freático, deve-se colocar um lastro de material granular, como areia, pedregulho ou pedra britada;
- c) É essencial garantir que a vala esteja devidamente compactada e nivelada, proporcionando um leito adequado para o assentamento dos tubos. O nivelamento deve ser realizado com equipamentos topográficos, seguindo a precisão de declividade do projeto;
- d) O nivelamento deve ser geométrico, com contranivelamento passando pelos centros dos PVS e caixas, que podem ser usados como ponto de mudança de nivelamento;
- e) É importante realizar um alinhamento preciso dos tubos, utilizando fio de nylon esticado entre dois visores consecutivos e fio de prumo, a fim de evitar desvios ou deformações durante a instalação;

^b Para tubos armados, a força de ruptura mínima deve ser 1,5 da força mínima isenta de fissura.

^c Os tubos com diâmetro nominal > 1000 mm devem ser armados.

- f) As réguas, cruzetas e gabaritos devem ser confeccionados com madeira de alta qualidade, apresentando perfurações adequadas para prevenir deformações ao longo do tempo;
- g) A fixação dos tubos deve ser feita com juntas elásticas ou rígidas, garantindo uma conexão resistente e estanque entre eles;
- h) É importante seguir as recomendações de compactação e proteção das valas para evitar danos aos tubos após a instalação, além de sempre seguir o projeto elaborado pelo projetista.

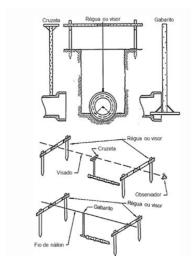


Figura 10 - Métodos de assentamento

Fonte: NBR 17015 (ABNT, 2023)

3.4.2 Juntas

A tubulação de concreto é conectada por meio de dois tipos de juntas: juntas elásticas e juntas rígidas. As juntas elásticas são aquelas em que anéis de borracha são utilizados nas extremidades dos tubos, garantindo uma vedação eficiente durante o transporte de água. Por outro lado, as juntas rígidas são caracterizadas pelo uso de argamassa de cimento e areia para unir os encaixes dos tubos.

Conforme atualização da NBR 17015 (ABNT, 2023) recomenda-se evitar o uso de juntas rígidas (Figura 11) de argamassa de cimento e areia, uma vez que elas podem permitir a infiltração e vazamento de água devido ao deslocamento causado pela retração da argamassa.

Figura 11 - Assentamento de PV com a junta rígida

Fonte: A autora (2023)

3.4.2.1 Junta Elástica

A NBR 17015 (ABNT, 2023), estabelece uma sequência para a execução das juntas elásticas em tubos de concreto:

- a) Verificar os anéis, seguindo as especificações da ABNT NBR 7676, para garantir que estejam em bom estado de uso e livre de sujeiras;
- b) Realizar a limpeza das faces externas das pontas dos tubos e das partes internas das bolsas, com destaque para a região de encaixe do anel;
- c) O anel deve ser inserido no chanfro na extremidade do tubo, evitando qualquer movimentação de torção;
- d) A ponta do tubo deve ser posicionada junto à bolsa do tubo subsequente que já está assentado, alinhando adequadamente e realizando o encaixe usando alavancas ou tirfor, conforme necessário;
- e) Verificar se o anel de borracha permanece corretamente alojado após o encaixe.

3.4.2.2 Junta Rígida

De acordo com a NBR 17015 (ABNT, 2023), a execução de juntas rígidas segue a seguinte sequência:

a) Após a limpeza das faces externas e internas do tubo e verificação de danos, a ponta do tubo deve ser corretamente posicionada junto à bolsa do tubo já assentado;

- b) Realizar o alinhamento da tubulação e o encaixe, seguido pela execução da junta com argamassa de cimento e areia no traço 1:3, utilizando aditivo evitando a retração;
- c) As juntas devem ser posicionadas com um ângulo de 45° em relação à superfície externa do tubo;
- d) Verificar se a argamassa foi aplicada em todo o perímetro do tubo. Especialmente em diâmetros de até 0,6m, o rejuntamento é feito no lado externo e para diâmetros maiores em ambos os lados.

3.4.3 Armazenamento de Tubo de Concreto Armado

Em conformidade com a NBR 17015 (ABNT, 2023), o local de armazenamento dos tubos de concreto deve atender às condições específicas. O espaço destinado ao armazenamento deve ser plano, limpo e livre de pedras, garantindo assim uma estocagem apropriada. Além disso, o material deve ser mantido limpo, evitando qualquer tipo de contaminação ou degradação, especialmente em relação aos anéis de borracha, que devem ser protegidos de danos causados por calor, raios solares, óleo e graxas.

Os tubos devem ser preferencialmente armazenados na posição vertical, mas caso seja necessário armazená-los na posição horizontal, é imprescindível que sejam apoiados em cima de pontos isolados nas extremidades. É importante ressaltar que a proximidade de aberturas de valas deve ser evitada durante o armazenamento dos tubos. Quando os tubos forem armazenados empilhados, é fundamental utilizar calços de segurança para garantir a estabilidade da pilha. E durante o processo de descarga, os tubos devem ser colocados no lado oposto ao material destinado à escavação.

A altura máxima permitida de empilhamento deve obedecer aos limites que são apresentados na Tabela 3:

Tabela 3 - Altura de Empilhamento

Altura máxima de empilhamento

Diâmetro nominal (DN)	Número de pilhas de tubos
300 a 400	4
500 a 600	3
700 a 1000	2
> 1000	1

Fonte: NBR 17015 (ABNT, 2023)

3.5 Tubo de PEAD

Apesar da ampla utilização do concreto armado ao longo dos anos, tem havido uma adoção crescente de tubos de polietileno de alta densidade, o chamado PEAD como alternativa viável, visto que são conhecidos pela rapidez de execução e facilidade de instalação. Esse material passou por testes rigorosos de resistência, segurança, estanqueidade e qualidade, obtendo resultados impressionantes em termos de desempenho e eficiência.

De acordo com Andrade (2022), as vantagens do tubo de PEAD ocorrem por possuir alta produtividade na execução de sistemas de saneamento, permitindo uma instalação eficiente. Além disso, devido ao seu coeficiente de rugosidade menor, exige menor declividade para o escoamento adequado, o que proporciona economia na construção de redes de drenagem. Segundo a Tigre ADS (2018) a execução dos tubos de PEAD pode ser realizada sem a necessidade de maquinário pesado, tornando o processo mais ágil e flexível. Além disso, estes tubos apresentam alta resistência química, sendo capazes de suportar uma ampla gama de substâncias corrosivas. Sua resistência a impactos e abrasão também contribui para a durabilidade do sistema. Os tubos de PEAD requerem baixa manutenção, o que reduz os custos e esforços associados ao sistema. Essas características combinadas tornam os tubos de PEAD uma escolha vantajosa em termos de eficiência, resistência, flexibilidade e custo-benefício para aplicações de saneamento (Kanaflex, 2019).

Os tubos de Polietileno de Alta Densidade (PEAD) são encontrados disponíveis no mercado de duas formas, dependendo da sua superfície externa: lisa

ou corrugada. A preferência geralmente recai sobre os tubos com superfície externa corrugada (Figura 12) devido ao aumento da resistência mecânica proporcionado pelas ranhuras, que conferem um reforço estrutural, tornando o tubo mais resistente (Tigre ADS, 2018).

Figura 12 - Tubo Corrugado em PEAD

Fonte: Tigre ADS (2018)

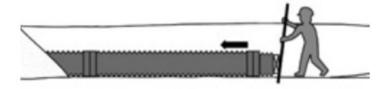
De acordo com a Tigre ADS (2018), a utilização de tubos corrugados de PEAD está ganhando espaço no Brasil devido a quatro principais fatores:

- a) Esses tubos são mais leves e possui um sistema de acoplamento ponta/bolsa, o que facilita a movimentação e instalação. Isso resulta em um processo mais rápido e econômico, reduzindo os custos envolvidos;
- b) Os tubos corrugados de PEAD possuem alta resistência química e não sofrem corrosão, mesmo quando expostos a águas pluviais contaminadas por esgoto ou produtos químicos. Essa característica assegura que os tubos de PEAD se mantenham duráveis e confiáveis ao longo do tempo;
- c) Outro benefício é a superfície interna lisa do PEAD, que oferece uma maior eficiência hidráulica. Isso permite projetos com declividades menores e instalações menos profundas, resultando em redução adicional nos custos de instalação;
- d) O sistema de acoplamento ponta/bolsa com anel de vedação garante a estanqueidade do sistema de drenagem. Isso evita danos e afundamentos na pavimentação de ruas e avenidas, contribuindo para a durabilidade e integridade do sistema como um todo.

Segundo a Associação Brasileira de Tubos Poliolefínicos e Sistemas (2013), os tubos fabricados a partir de PEAD com elevado peso molecular são altamente recomendados devido às suas excelentes propriedades mecânicas, físicas, químicas e hidráulicas. Estes tubos apresentam uma resistência excepcional ao tenso fissuramento e ao creep (fluência), garantindo uma vida útil superior a 50 anos. A

adição de negro de fumo como aditivo proporciona resistência à fotodegradação, permitindo o uso desses tubos em exposição ao tempo.

De acordo com Pereira (2019), os tubos fabricados em PEAD possuem notável resistência à corrosão e são praticamente imunes a diversas reações químicas e eletromecânicas. Sua durabilidade foi comprovada em testes conduzidos nos Estados Unidos, onde foram obtidos resultados que atestam vida útil de 75 anos.

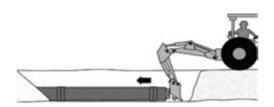

3.5.1 Método de Instalação

A Tigre ADS (2018) apresenta diferentes métodos de instalações para os tubos em PEAD corrugado para drenagem, sendo que a união depende do diâmetro dos mesmos. Esses métodos de assentamento de tubos serão mostrados a seguir:

a) Método de Instalação de Alavanca e Barra de Ferro

Na Figura 13 é demonstrado o manuseio aconselhado para a instalação de tubulações com diâmetro de até 450 mm (18").

Figura 13 – Assentamento de tubo PEAD com diâmetro até 450 mm

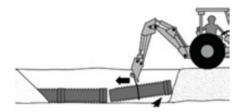


Fonte: Tigre ADS (2018)

b) Método de Instalação com Escavadeira

Na Figura 14 é exibido o manuseio indicado para a instalação de tubulações com diâmetro desde 500 mm (20").

Figura 14 – Assentamento de tubo PEAD com Escavadeira para diâmetro desde 500 mm



Fonte: Tigre ADS (2018)

c) Método de Instalação com Escavadeira e Cinta

Na Figura 15 está mostrando uma outra forma de manuseio aconselhado para a instalação de tubulações com diâmetro desde 500 mm (20").

Figura 15 - Assentamento de tubo PEAD com Escavadeira e Cinta para com diâmetro desde 500 mm

Fonte: Tigre ADS (2018)

d) Método de Instalação com Catraca de Aperto

Na Figura 16 está apresentada outra opção para a instalação de tubulações com diâmetro desde 450 mm (18").

Figura 16 - Assentamento de tubo PEAD com diâmetro desde 500 mm

Fonte: Tigre ADS (2018)

3.5.2 Armazenamento de Tubo de PEAD

Conforme as diretrizes estabelecidas na NBR 17015 (ABNT, 2023), para o armazenamento de tubo de polietileno, incluindo o PEAD nessa categoria, algumas precauções devem ser seguidas rigorosamente. Os tubos e conexões não devem ficar expostos a fontes de calor, tais como escapamentos de veículos, nem agentes químicos agressivos, incluindo solventes. O local destinado ao armazenamento deve atender a requisitos essenciais, como ser plano, seco, limpo, livre de pedras e objetos pontiagudos.

Os tubos em bobina tem a opção de serem armazenados na posição horizontal, em pilhas com altura máxima de 1,80 m, ou na posição vertical.

Entretanto, é importante respeitar a altura máxima de armazenamento de 1,80 m ou em até 12 camadas, optando pela medida que for menor. Na Figura 17 são ilustrados exemplos práticos de armazenamentos, servindo como referência para a correta disposição dos tubos.

Figura 17 - Exemplos de estocagem de tubos

Fonte: NBR 17015 (ABNT, 2023)

3.6 Escavação de Vala

Conforme relatado pela Tigre Ads (2018), a largura da vala pode variar com base na qualidade do solo local, nos materiais de preenchimento utilizados, nos níveis de compactação e nas cargas envolvidas. Portanto, é fundamental que a vala seja sempre dimensionada de maneira adequada, de modo a permitir a correta colocação e compactação do material de preenchimento ao redor do tubo. Na Tabela 4 estão apresentadas as larguras mínimas recomendadas para a maioria das instalações padrão.

Tabela 4 - Largura de Vala para Tubo de PEAD

Diâmetro Nominal (m)	0,40	0,60	0,80	1,05	1,20
Largura Mínima da Vala (m)	0,875	1,196	1,45	1,815	2,009

Fonte: Adaptado de Tigre ADS (2018)

Seguindo as diretrizes estabelecidas para a escavação de tubos de concreto armado, conforme as especificações fornecidas pelo Sistema CEHOP da Companhia Estadual de Habitação e Obras Públicas (Sergipe, 2023), foi encontrada uma Tabela que define as dimensões máximas recomendadas para a largura da vala, considerando o assentamento da tubulação. Essas diretrizes são essenciais

para garantir a correta instalação da tubulação em projetos de construção. Na Tabela 5 são demostradas as larguras máximas das valas correspondentes aos diâmetros empregados no projeto.

Tabela 5 - Largura de Vala para Tubo de Concreto Armado

Diâmetro (m)	Profundidade (m)	Largura Máxima do Vala (m)	
	0,00 A 2,00	1,35	
0.40	2,01 A 3,00	1,45	
0,40 — —	3,01 a 4,00	1,55	
	0,00 A 2,00	1,7	
0.60	2,01 A 3,00	1,8	
0,60 — —	3,01 a 4,00	1,9	
	0,00 A 2,00	1,9	
0,80	2,01 A 3,00	2	
	3,01 a 4,00	2,1	
	0,00 A 2,00	2,15	
1,00	2,01 A 3,00	2,25	
	3,01 a 4,00	2,35	
	0,00 A 2,00	2,5	
1,20	2,01 A 3,00	2,6	
	3,01 a 4,00	2,7	

Fonte: Adaptado de Sergipe (2023)

3.7 Escoramento

Conforme a norma NBR 15645 (ABNT, 2020) é obrigatório o escoramento de valas (Figura 18) com profundidade superior a 1,25 m, e devendo seguir algumas diretrizes:

- a) O escoramento deve ser executado de acordo com o projeto vigente;
- b) A escolha do tipo de contenção lateral deve levar em consideração o tipo de solo e a profundidade das valas, podendo essas contenções serem com estacas, pranchas metálicas, caixões deslizantes;
- c) Para evitar sobrecarga no escoramento, a norma estabelece que o material escavado seja colocado a uma distância mínima de 1,00 m da borda da vala ou conforme projeto;

d) O escoramento não pode ser retirado antes de o preenchimento atingir 0,60m acima da tubulação ou 1,50m abaixo da superfície.

Figura 18 - Escoramento de Vala

Fonte: A autora (2023)

3.8 Reaterro

De acordo com as orientações estabelecidas na NBR 17015 (ABNT, 2023), a execução do reaterro (Figura 19) em vias públicas, quando não especificada no projeto, segue os seguintes critérios:

- a) A base é a estrutura sobre a qual será apoiada. Sua composição e espessura são determinadas pelas condições locais e tipos de tubulação a ser utilizada;
- b) A envoltória lateral deve ser executada de forma a atender aos requisitos mínimos do projeto. É crucial garantir que as tubulações fiquem continuamente apoiadas no fundo da vala, com berço e preenchimento bem executados em ambas as laterais, em camadas inferiores a 0,10 m;
- c) O reaterro superior é realizado com material selecionado, livre de pedras ou matacões, em camadas com espessura de 0,10 a 0,15 metros. A compactação é feita somente na região compreendida entre plano vertical tangente a tubulação e a parede da vala;
- d) O reaterro deve ser executado em camadas de no máximo 0,20 m de espessura, utilizando areia, material removido e brita graduada simples (BGS), de acordo com os seguintes critérios de compactação:
 - Para a areia a compacidade relativa > 70%, conforme a ABNT 12051;

- Para o solo de reaterro da vala, grau de compactação do solo deve ser ≥
 95%;
- Para o BGS a densidade aparente da camada compactada deve ser ≥ 100%.
- A compactação do solo pode ser realizada manualmente ou por meio de equipamento mecânico, desde que atenda os requisitos estabelecidos no projeto.

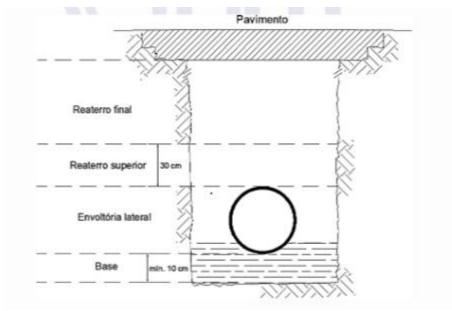


Figura 19 - Etapas de Reaterro da vala

Fonte: NBR 17015 (ABNT, 2023)

3.9 Transporte

De acordo com as especificações da NBR 17015 (ABNT, 2023), o transporte dos tubos requer atenção a certas diretrizes. Os veículos utilizados devem possuir dimensões compatíveis com o comprimento dos tubos a serem transportados, e suas plataformas devem estar livres de objetos pontiagudos ou cortantes que possam causar danos durante o transporte. Além disso, é importante evitar o uso de correntes, cintas metálicas, cordas ou cabos de aço para o travamento das cargas, optando por cintas não metálicas de malha larga ou materiais que não danifiquem os tubos e conexões. Para a movimentação das cargas, recomenda-se o uso de guindastes e planos inclinados, de modo a evitar quedas e impactos. Essa movimentação deve ser realizada de forma suspensa ou sobre roletes, garantindo a integridade dos tubos durante o deslocamento.

A Tigre ADS (2018) oferece uma Tabela que apresenta as orientações ideais para a manipulação dos tubos, levando em consideração o diâmetro e a capacidade estimada de transporte. Os detalhes dessas diretrizes estão disponíveis na Tabela 6.

Tabela 6 - Método recomendado para manuseio de tubulação

Diâmetro Nominal	Peso (kg/6m)	Método Recomendado para Manuseio de Tubulação	Capacidade Estimada de Transporte (tubos/Plataforma 12 m)
400 mm	55 kg	Manual	64
600 mm	98 kg	Equipamento	24
800 mm	190 kg	Equipamento	16
1050 mm	217 kg	Equipamento	8
1200 mm	305 kg	Equipamento	8

Fonte: Adaptado de Tigre ADS (2018)

3.10 Pavimentação

Segundo a NBR 17015 (ABNT, 2023), a reposição de pavimentação deve ser iniciada logo após a conclusão do reaterro compactado e regularizado. Essa reposição deve ser executada de forma idêntica ao removido, respeitando tanto o tipo, dimensão e qualidade do pavimento original. A reconstrução do pavimento inclui a recolocação de elementos como meios fios, bocas de lobo que tenham sido demolidos ou removidos durante a execução dos serviços. É fundamental que essa reconstrução seja realizada com precisão, a fim de garantir a harmonia e a uniformidade do pavimento restaurado. Vale ressaltar que essa norma contempla diferentes tipos de pavimentação, tais como pavimentação em paralelepípedo ou bloco, assim como pavimentação asfáltica. Cada um desses tipos requer procedimentos que devem ser seguidos conforme as orientações normativas.

3.10.1 Pavimentação em Paralelepípedo ou Bloco

Conforme a NBR 17015 (ABNT, 2023), o assentamento das peças de pavimentação deve ser realizado de acordo com as especificações. Para blocos articulados, o assentamento deve ser sobre um lastro de areia com 0,05 m de espessura, enquanto para blocos sextavados ou paralelepípedos, a espessura do lastro de areia deve ser de 0,1 m.

Em situações em que seja necessário melhorar as condições de suporte do solo, é possível executar um lastro de brita ou concreto magro. O assentamento

apropriado dessas peças deve ocorrer das bordas da faixa para o centro e na rampa de baixo para cima. Para o rejuntamento das peças, é indicado o uso de pedriscos ou areia. Posteriormente, as juntas devem ser preenchidas com asfalto, garantindo assim uma vedação adequada e maior resistência ao conjunto da pavimentação, como esta apresentada na Figura 20.

Figura 20 - Esquema de Pavimentação de Paralelepípedo

Fonte: Marchioni e Silva (2011)

3.10.2 Pavimentação Asfáltica

De acordo com a NBR 17015 (ABNT, 2023), na ausência de exigências específicas dos órgãos de cada estado, a reposição deve seguir as especificações contidas no projeto. No caso de utilização de asfalto a quente, é imprescindível realizar o controle rigoroso da temperatura do material, mesmo em pequenos reparos, tomando cuidado especial durante a execução de emendas. Na Figura 21, é apresentada a execução deste tipo de pavimento.

Figura 21 - Execução de Pavimentação Asfáltica

3.11 Análise da Viabilidade Econômica

A avaliação econômica dos projetos de drenagem urbana conta com importantes instrumentos que auxiliam no desenvolvimento dos resultados técnicos, proporcionando melhor apuração das alternativas examinadas para esses projetos. Através da posse do projeto, é possível realizar uma análise de viabilidade econômica da construção, proporcionando às empresas uma compreensão da dimensão das despesas, riscos e potencial lucratividade do empreendimento.

De acordo com Canholi (2016), para os projetistas de rede de drenagem urbana a economia e facilidade são fatores primordiais para os serviços de operação e manutenção visto que no decorrer do planejamento esses fatores desempenham um papel fundamental no funcionamento da obra, bem como na vida útil da obra.

Segundo Mattos (2010), o planejamento é um processo de gerenciamento que envolve estabelecer metas, determinar as ações e criar planos estruturados para alcançar estes objetivos. Ele desempenha um papel fundamental na coordenação de diversas atividades como orçamento, compras e gestão de pessoal. Além disso, o planejamento permite identificar e corrigir eventuais desvios na obra, tomando medidas adequadas em tempo hábil para garantir o sucesso do projeto.

Atualmente, o planejamento é um dos elementos fundamentais para o êxito de qualquer empreendimento. Para Goldman (2004), no contexto específico de projetos de drenagem urbana, essa premissa não é diferente, uma vez que é essencial contar com um sistema que facilite a comunicação entre diversos profissionais envolvidos na execução, além de permitir a troca de informações e conhecimentos relevantes para a construção. O planejamento também engloba a responsabilidade de buscar serviços e materiais que sejam economicamente viáveis, de alta qualidade e com fornecimento garantido, visando garantir o progresso adequado da obra.

Existem diversas variáveis essenciais para avaliar a viabilidade de uma obra, incluindo o custo do projeto, a viabilidade econômica, o custo de construção, as despesas jurídicas, impostos e taxas. Goldman (2004) cita algumas metodologias para realizar essa análise. Abaixo estão algumas delas:

a) Percentual do valor do lucro em relação ao valor das despesas do empreendimento;

- b) Valor do lucro em relação ao número de meses de duração do empreendimento;
- c) Percentual da renda mensal total em relação às despesas do empreendimento.

No processo de planejamento e implementação de sistema de drenagem urbana, é fundamental considerar uma série de aspectos. Conforme destacado por Canholi (2016), alguns desses aspectos incluem:

- a) O custo de investimento, uma vez que a construção de infraestruturas de drenagem envolve um investimento significativo, abrangendo desde os elementos físicos da drenagem até os projetos e levantamentos necessários;
- b) Levar em conta o custo de operação e manutenção ao longo dos anos, uma vez que os sistemas de drenagem requerem uma manutenção regular para garantir seu bom funcionamento. A falta de manutenção adequada pode levar a problemas como o risco de inundações e prejudicar a sociedade como um todo;
- c) Outro fator crucial é relacionado ao risco visto que um projeto mal dimensionado ou inadequado pode resultar no transbordamento da rede de drenagem durante chuvas intensas, aumentando o risco de erosão e deslizamentos de terra em áreas urbanas.

Conforme observado, existem diferentes tipos de custos a serem considerados em um projeto como um todo, cada um com características específicas e impactos diretos nos resultados financeiros do empreendimento. Segundo Tisaka (2011), o custo é o resultado da adição de todos os custos unitários dos serviços necessários para a construção, incluindo também os gastos com infraestrutura essenciais para a execução do projeto. Ao elaborar um orçamento, é essencial ter uma definição clara dos custos totais de uma obra, que são compostos pelos custos diretos e custos indiretos da construção, os quais são definidos por Mattos (2019):

a) Custo Direto

É a soma dos custos unitários específicos atribuídos diretamente à execução do projeto, incluindo materiais de construção, equipamentos e mão de obra.

b) Custo Indireto

São os custos que não possuem uma relação direta com os serviços e produtos, ocorrendo independentemente das quantidades produzidas na obra.

Ao desenvolver um projeto básico para qualquer empreendimento, especialmente na área de drenagem urbana, é fundamental incluir elementos técnicos essenciais. Segundo Tisaka (2011), os principais elementos técnicos que compõem tais projetos são:

a) Desenho

É uma representação gráfica do elemento a ser executado, elaborada de maneira a possibilitar sua visualização em escala apropriada, atendendo às normas técnicas relevantes.

Dentro do desenho técnico de drenagem, é necessário definir as bacias de drenagem que compõem a obra, identificando seus pontos de deságue. Além disso, é importante apresentar uma planta esquemática da obra, que permita uma compreensão detalhada dos diversos dispositivos do elemento de drenagem que serão utilizadas, como boca de lobo, galerias, canais, entre outros.

b) Planilha de Custos com Quantitativos e Serviços

Trata-se de um levantamento realizado a partir dos desenhos, que consiste em quantificar separadamente os materiais e serviços necessários para cada elemento detalhado, visando viabilizar a elaboração do orçamento correspondente.

c) Orçamento Estimativo

É uma avaliação prévia dos custos envolvidos na obra, baseado em preços de insumos de mercado e custos unitários de referência. Além disso, é uma etapa importante na viabilização de um projeto de drenagem, pois permite uma avaliação inicial dos custos e auxilia na decisão durante o processo de planejamento e execução da obra.

3.11.1 Elaboração de um Cronograma Físico Financeiro

Cronograma físico financeiro é uma representação gráfica relacionada ao avanço físico e o custo do projeto ao longo do tempo. Através do cronograma é possível verificar se as atividades estão sendo executadas conforme o planejado e se os custos estão dentro do orçamento proposto (Tisaka, 2011). Os cronogramas atualmente são elaborados por diversos softwares, dentre eles o ProjectLibre.

O ProjectLibre é uma ferramenta de gerenciamento de projetos semelhante ao Microsoft Project, porém gratuito. Esse software oferece recursos para controlar o ciclo de vida do projeto, gerenciar custos e comparar o planejado com o realizado, permitindo análises em diferentes estágios da execução. Além disso, é amplamente utilizado para criar gráficos de Gantt (Santos, 2018).

De acordo com Mattos (2010), o uso do cronograma de Gantt é uma forma eficaz de visualizar as atividades de um projeto, incluindo suas datas de início e término. Essa ferramenta gráfica é considerada essencial para o controle do projeto, pois é visualmente atrativa e apresenta as atividades à esquerda, enquanto as barras representativas são desenhadas em uma escala de tempo à direita. O cronograma de Gantt proporciona uma visão clara das atividades e suas respectivas durações, facilitando o acompanhamento e o gerenciamento do progresso do projeto.

No estado de Sergipe, existe o ORSE (Sistema de Orçamento de Obras de Sergipe), disponibilizado pela Companhia Estadual de Habilitação e Obras Públicas (Sergipe, 2023), uma base de dados que analisa e divulga informações relacionadas a preços e custos na construção civil. O ORSE pode ser uma fonte valiosa para obter dados atualizados e confiáveis durante o processo de orçamentação.

3.12 Análise da Viabilidade Técnica

Ao analisar a viabilidade técnica, é apropriado considerar os estudos disponíveis para os tubos de concreto armado e os tubos de PEAD, e entender sobre suas propriedades mecânicas como ductilidade, resistência química, eficiência hidráulica e à abrasão, além da vida útil do material. As diferenças dessas tecnologias devem ser cuidadosamente comparadas, levando sempre em

consideração os requisitos e implicações relevantes, para assim determinar suas possíveis limitações de uso.

De acordo com Askeland e Wright (2019), a ductilidade é a capacidade de um material se deformar permanentemente sem se romper quando submetido a uma força externa. Trata-se da habilidade do material de suportar grandes deformações sem fraturar.

As propriedades mecânicas dos materiais são influenciadas pela temperatura, que representa o nível de agitação molecular. Em temperaturas mais altas, o módulo de elasticidade diminui, enquanto a ductilidade tende a aumentar (Askeland; Wright, 2019).

Segundo a Kanaflex (2019), os polietilenos possuem uma estrutura apolar semelhante aos hidrocarbonetos parafínicos, por isso apresenta uma notável resistência a substâncias químicas. No entanto, é importante ressaltar que, em determinadas condições, as propriedades mecânicas do PE podem ser afetadas pela ação de compostos químicos.

Comparado a outros materiais utilizados na fabricação de tubos para infraestrutura, o PEAD demonstra uma excelente resistência à abrasão. Essa propriedade é avaliada por meio do Teste de Abrasão de Darmstadt, um método de ensaio padronizado pela norma DIN 19534. Através desse ensaio, foram comparados os resultados da abrasão em amostras de tubos feitos de diferentes materiais (Kanaflex, 2019).

A eficiência hidráulica está diretamente relacionada à capacidade de condução de vazão do tubo, sendo inversamente proporcional à sua rugosidade. Nesse contexto, o baixo índice de rugosidade, representado pelo coeficiente de *Manning*, resulta em uma maior eficiência hidráulica (Prates, 2023).

O grau de agressividade é considerado ligeiramente maior para os tubos que trabalham com esgoto e água, o que impõe exigências específicas em termos de durabilidade. É importante ressaltar que, atualmente, não existem modelos padronizados para prever a vida útil desses tubos. Esses dados dependem da gestão do proprietário da rede de saneamento, o qual deve monitorar o sistema e criar um mapeamento desde a instalação da tubulação. (Pereira, 2019).

4 METODOLOGIA

A área abrangida pelo projeto em análise engloba cerca de 4 km², com uma extensão total de rede de 2.378,00 metros. Esse projeto foi concebido para abranger as ruas Maria do Carmo Batista, Agnaldo Dantas, Rosa Azul, Avenida Alexandre Alcino e a estrada que ficava localizada à antiga lixeira, situada no bairro 17 de março, na cidade de Aracaju, no estado de Sergipe (SE). A área de pesquisa, e o projeto de drenagem desta área são apresentados na Figura 22.

Linha Amarela:
Assentamento de tubo

Figura 22 - Ilustração da área dimensionada para implantação do tubo na rede de drenagem

Fonte: A autora (2023)

O empreendimento foi conduzido por uma empresa sediada na cidade de Aracaju, especializada na elaboração de projetos de drenagem. Este projeto foi concebido em resposta a uma necessidade, visando aprimorar as condições de habitação para a comunidade residente. A estratégia central do projeto envolveu a adoção de tubos de concreto armado para a implantação do sistema de drenagem.

Entretanto, com o intuito de realizar uma avaliação comparativa relacionada aos custos, cronograma de execução e viabilidade técnica desta iniciativa, será simulado a substituição desses tubos pelo emprego de tubos de PEAD.

Inicialmente foi conduzida uma pesquisa bibliográfica com o propósito de construir o embasamento teórico deste trabalho, contemplando a análise de artigos científicos, teses, monografias e normas.

Subsequentemente, avançou-se para a fase de estudo de caso, a qual se fundamentou nas informações adquiridas junto à empresa responsável pelo projeto. Isso permitiu realizar o levantamento dos quantitativos da escavação, escoramento, apiloamento, assentamento de tubo e reaterro. Com base na literatura técnica foram adotadas produtividades para execução dos serviços e equipes, sendo possível estabelecer o cronograma e o plano de execução abrangendo ambos os materiais (tubos de concreto e PEAD). Por fim, realizou-se a comparação dos resultados obtidos.

4.1 Análise Comparativa dos Custos

A fim de efetuar uma análise comparativa dos custos relacionados à execução da obra utilizando tubos de concreto e tubos de PEAD, recorreu-se à utilização do software ORSE – Orçamento de Obras de Sergipe.

No âmbito desta metodologia, a planilha disponibilizada pela referida empresa foi empregada como base, visando à identificação dos serviços relacionados aos tubos de drenagem. Importante notar que este estudo não abordou a comparação com galerias, devido às limitações temporais que delimitam sua realização.

Com base na análise do projeto e das plantas de perfil, foi possível identificar a profundidade média para o cálculo do volume de escavação. Nesse processo, utilizou-se a seguinte Equação para determinar o volume:

Volume de escavação de vala foi calculado a partir da Equação 1:

$$V_{esc} = C \times L \times P \tag{1}$$

Onde:

V_{esc}= Volume em metro cubico;

C= Comprimento em metros;

L = Largura em metros;

P= Profundidade em metros.

Para o tubo de concreto, o valor P foi determinado somando a profundidade média até o tubo à espessura da parede do próprio tubo, conforme foi retirado da Tabela 7. No caso do tubo de PEAD, a profundidade adotada foi calculada somando o recobrimento mínimo ao diâmetro do tubo, conforme é apresentado na Tabela 8.

Tabela 7 - Dimensões dos tubos para água pluvial com encaixe ponta e bolsa

Diâmetro nominal (milímetro)	Comprimento (milímetro)	Espessura (milímetro)		
		PA2		
400	1000	45		
600	1000	60		
800	1000	72		
1000	1000	80		
1200	1000	96		

Fonte: Adaptado de NBR 17015 (ABNT, 2023)

Tabela 8 - Recobrimento de tubulações por tipo de pavimento (sistema de drenagem)

Tipo de pavimento	Recobrimento (metros)
Valas sob passeio	0,80
Valas sob via pavimentada ou com freide definido por meio – fio e sarjeta	1,00
Valas sob via de terra ou com greide indefinido	1,20

Fonte: NBR 17015 (ABNT, 2023)

Em consonância com uma prática comum nas medições realizadas pela Empresa Municipal de Obras e Urbanização (Emurb) e os serviços disponibilizados pelo ORSE, inicialmente realizou-se o cálculo do custo de escavação considerando uma profundidade máxima de 1,5 m. Em seguida, procedeu-se ao cálculo para as profundidades superiores à 1,5 m.

Na etapa de comparação da área de escoramento de vala neste estudo, adotou-se a Equação 2:

$$A=C \times P \times 2 \tag{2}$$

Sendo que:

A= Área de escoramento em metros quadrados;

C= Comprimento das valas em metros;

P= Profundidade das valas em metros.

A necessidade de escoramento em ambos os lados da vala levou à multiplicação por 2 na fórmula, permitindo assim a determinação da área total de escoramento. Em seguida, foi feita a busca por esse serviço na SEINFRA para obter

o custo unitário desta atividade. Essa informação possibilitou calcular o custo deste serviço tanto para tubo de concreto quanto para tubo de PEAD.

Para a determinação da área de apiloamento de vala para a análise comparativa deste serviço, empregou-se a Equação 3:

$$A=C \times L \tag{3}$$

Onde:

A= Área de fundo de vala em metros quadrados;

C= Comprimento das valas em metros;

L= Largura das valas em metros.

Para o tubo de concreto, o valor da largura (L) foi obtido consultando a Tabela 5 disponível na CEHOP (Sergipe, 2023), que fornece as larguras de vala em relação à profundidade para cada diâmetro. No caso do tubo de PEAD, a largura adotada foi extraída da Tabela 4 presente no manual da Tigre ADS, que determina a largura em função do diâmetro. Após a obtenção dos valores de área para cada tipo de tubo, recorreu-se ao ORSE para obter-se o custo unitário do serviço. Posteriormente, procedeu-se à comparação de custos.

Para a análise comparativa do assentamento de tubos, adotou-se a abordagem de determinar a quantidade de tubos necessária com base na Equação 4, correspondendo ao seu diâmetro:

$$Q = C_{total} / C_{tubo}$$
 (4)

Onde:

Q= Quantidade de tubos em metros;

C_{tota}l= Comprimento total em metros;

C_{tubo}= Comprimento tubo em metros.

Para tubos de concreto, o comprimento de cada tubo foi estabelecido em 1 metro, enquanto para os tubos de PEAD, o comprimento de cada tubo foi definido como 6 metros, pois são os comprimentos comerciais vendidos pelos fabricantes. Em seguida, recorreu-se ao ORSE para determinar o custo unitário do serviço de assentamento e fornecimento de tubo de concreto. Quanto aos tubos de PEAD, utilizou-se as informações da base da Secretaria de Infraestrutura do Estado de Ceará (SEINFRA, 2023) para obter o custo unitário correspondente.

Por fim, para determinar o volume de reaterro, adotou-se a Equação 5:

$$V_{\text{reaterro}} = V_{\text{esc}} - V_{\text{tubo}}$$

$$V_{\text{reaterro}} = (C \times L \times P) - (3,14 \times R^2 \times C)$$
(5)

Sendo que:

V_{reaterro} = Volume de reaterro em metro cúbico;

V_{esc} = Volume escavado em metro cúbico;

V_{tubo} = Volume do tubo em metro cúbico.

Os parâmetros utilizados na Equação são definidos da seguinte forma:

C= Comprimento das valas em metros;

L = Largura das valas em metros;

P= Profundidade das valas em metros;

R= Raio do tubo em metros.

Com os volumes de reaterro calculados para cada tipo de tubo, prosseguiu-se consultando o ORSE para obter o custo unitário desse serviço. A partir desses valores unitários, calculou-se o custo total do serviço de reaterro e realizou a comparação entre eles.

Nas Tabelas 9 e 10 que estão apresentadas a seguir, estão registrados os preços unitários dos serviços selecionados, os quais foram empregados na análise de custos comparativos entre os tubos de concreto armado e o tubo de PEAD.

Tabela 9 - Custo Unitário dos serviços para Tubo de Concreto

Descrição	Unidade	Custo Unitário
Escavação com retro-escavadeira de pneus, de valas, em material 1 categoria até 1,50 de profundidade	m³	9,76
Escavação com retro-escavadeira de pneus, de valas, em material 1 categoria entre 1,50 e 3,00 m de profundidade	m³	10,97
Escoramento Contínuo com Prancha Metálica	m²	34,42
Apiloamento manual de fundo de vala	m²	24,77
Fornecimento e assentamento de tubo de concreto armado ca2 d=0,40	m	154,64
Fornecimento e assentamento de tubo de concreto armado ca2 d=0,60	m	223,77
Fornecimento e assentamento de tubo de concreto armado ca2 d=0,80	m	406,38
Fornecimento e assentamento de tubo de concreto armado ca2 d=1,00	m	553,56
Fornecimento e assentamento de tubo de concreto armado ca2 d=1,20	m	815,8
Reaterro mecanizado de vala com placa vibratória	m³	23,04

Fonte: Adaptado de ORSE (2023) e SEINFRA (2023)

Tabela 10 - Custo Unitário dos serviços para Tubo de PEAD

Descrição	Unidade	Custo Unitário
Escavação com retro-escavadeira de pneus, de valas, em material 1 categoria até 1,50 de profundidade	m³	9,76
Escavação com retro-escavadeira de pneus, de valas, em material 1 categoria entre 1,50 e 3,00 m de profundidade	m³	10,97
Escoramento Contínuo com Prancha Metálica	m²	34,42
Apiloamento manual de fundo de vala	m²	24,77
Aquisição e assentamento de tubo corrugado de PEAD d=0,40	m	337,91
Aquisição e assentamento de tubo corrugado de PEAD d=0,60	m	576,96
Aquisição e assentamento de tubo corrugado de PEAD d=0,80	m	859,61
Aquisição e assentamento de tubo corrugado de PEAD d=1,05	m	1528,16
corrugado de PEAD d=1,20	m	1920,22
Reaterro mecanizado de vala com placa vibratória	m³	23,04

Fonte: Adaptado de ORSE (2023) e SEINFRA (2023)

É relevante observar que o processo do orçamento foi conduzido no mês de outubro de 2023, mas a base de dados utilizado no ORSE foi de agosto de 2023.

4.2 Análise Comparativa de Cronograma e Execução

A análise comparativa do cronograma foi conduzida com base em premissas que envolvem a utilização de índices e produtividade encontradas na Tabela de Composição de Preços para Orçamento (TCPO, 2010), no site da SEINFRA (2023) e no Sistema Nacional de Pesquisa de Custos e Índices da Construção Civil (SINAPI, 2022) abrangendo as atividades de escavação de vala, escoramento, apiloamento, assentamento de tubo e reaterro. Além disso, considerou-se a disponibilidade de uma equipe básica para todas as atividades, recorrendo a equipes adicionais nos casos em que a equipe básica não era suficiente. Adotou-se uma jornada diária de trabalho de 8 horas como padrão.

Na metodologia desse trabalho, as composições unitárias de orçamento desempenharam um papel fundamental na geração das durações necessárias para o planejamento da obra, visto que indicam a produtividade das equipes básicas para execução dos serviços. Em seguida, serão apresentadas as Tabelas específicas que foram empregadas para determinar as durações das atividades de escavação de

vala, escoramento, apiloamento, assentamento de tubo, reaterro. Essas Tabelas foram essenciais para a definição dos prazos de execução das diferentes etapas do projeto.

Na Tabelas 11 são exibidos os componentes que compõe o serviço de escavação de vala, além da quantidade de consumo destes insumos por unidade de serviço. Vale salientar que as faixas de profundidades abaixo, foram adotadas apenas para o cálculo das durações. No custo, o ORSE adotava outra divisão.

Tabela 11 – Consumo de insumos para escavação mecanizada de vala em solo de 1° categoria (Unidade: m³)

Componente	llnidada	Consumo		
	Unidade	Até 2	De 2 a 4	
Servente	h	0,0704	0,019	
Retroescavadeira sobre pneus	H prod	0,0704	0,019	

Fonte: Adaptado de TCPO (2010)

Na Tabela 12 são mostrados os insumos que compõe o serviço de escoramento de vala, juntamente com o consumo destes por unidade de serviço.

Tabela 12 – Consumo de insumos para escoramento contínuo com prancha metálica (Unidade: m²)

Descrição	Unidade	Consumo
Servente	h	0,3

Fonte: Adaptado de SEINFRA (2023)

Na Tabela 13 são mostrados os insumos que compõe o serviço de apiloamento de fundo de vala, além de apresentar o consumo destes elementos por unidade de serviço.

Tabela 13 – Consumo de insumos para apiloamento de fundo de vala com maço de 40kg a 60 kg (Unidade: m²)

Componente	Unidade	Consumo		
		Até 30 De 40 a 60		
Servente	h	1,5	1,7	

Fonte: Adaptado de TCPO (2010)

Na Tabela 14 são mostrados os insumos que compõe o serviço de assentamento de tubo de concreto, juntamente com o consumo destes por unidade de serviço de acordo com o diâmetro usado.

Tabela 14 – Consumo de insumos para execução de rede de drenagem com tubo de concreto, rejuntado com argamassa de cimento e areia (Unidade: m)

Componente	Unidade		Consumo			
		400	600	800	1000	1200
Escavadeira hidráulica sobre esteiras, caçamba 0,80m³	chp	0,074	0,105	0,136	0,167	0,209
Escavadeira hidráulica sobre esteiras, caçamba 0,80m³	chi	0,155	0,221	0,287	0,352	0,4405
Tubo de concreto, junta rígida	m	1,03	1,03	1,03	1,03	1,03
Assentador de tubos com encargos complementares	h	0,346	0,493	0,64	0,787	0,9849
Servente com encargos complementares	h	0,692	0,986	1,28	1,574	1,9698
Argamassa traço 1:3	m³	0,002	0,005	0,012	0,028	0,035

Fonte: Adaptado de SINAPI (2022)

Na Tabela 15 são apresentados os insumos que compõem o serviço de assentamento de tubo de PEAD, juntamente com o consumo de acordo com o diâmetro usado.

Tabela 15 – Consumo de insumos para execução de Tubo de PEAD, junta rígida, fornecimento e assentamento (Unidade: m)

Descrição	Unidade	Coeficiente				
		400	600	800	1005	1200
Pedreiro	h	0,18	0,18	0,187	0,24	0,25
Servente	h	0,30	0,30	0,3210	0,48	0,50
Tubo corrugado de PEAD	m	1,00	1,00	1,00	1,00	1,00
Areia média	m³	0,498	0,693	0,9310	1,409	1,68

Fonte: Adaptado de SEINFRA (2023)

Na Tabela 16 são exibidos os insumos que integram o serviço de reaterro de vala, e o consumo de cada um deles.

Tabela 16 – Consumo de insumos para execução de reaterro mecanizado de vala empregando compactador de placa vibratória (Unidade: m³)

Componente	Unidade	Consumo
Servente	h	0,12
Compactador de placa		
vibratória, diesel, potência 4,7	h prod	0,061
HP (3,5 KW) - vida útil 8.000 h		

Fonte: Adaptado de TCPO (2010)

Com as premissas definidas, realizou-se o cálculo da duração de cada atividade com base na Equação 6 extraída de Mattos (2010):

$$Duração = \frac{QTDE \ x \ INDICE}{QTDE \ de \ Recursos \ x \ Jornada}$$
 (6)

Onde:

QTDE = Quantidade de serviço (extraída dos projetos);

ÍNDICE = Índice da equipe básica com base nos índices do TCPO (2010) , SEINFRA (2023), ORSE (2023) e SINAPI (2022) a depender do serviço;

QTDE de Recursos = Quantidade de equipe básica (adotada para cada serviço);

Jornada= Quantidade trabalhada em horas (adotada 8 h/dia).

Para calcular a quantidade de equipamentos, empregou-se a Equação 7 extraída de Mattos (2010):

$$Duração = \frac{QTDE}{Prod \ X \ QTDE \ de \ Recursos \ x \ Jornada}$$
 (7)

Onde:

QTDE = Quantidade de serviço (extraída dos projetos);

Prod = Produtividade (inverso do índice extraído do TCPO (2010), SEINFRA (2023), ORSE (2023) e SINAPI (2022);

QTDE de Recursos = Quantidade de equipe básica (adotada para cada serviço);

Jornada= Quantidade trabalhada em horas (adotada 8 h/dia).

Com isso, calculou-se a duração para os dois tipos de tubos e em seguida, empregou-se o aplicativo ProjectLibre, uma vez que esse software gratuito possibilita a inclusão do diagrama de Gantt. Esse diagrama é um gráfico que será utilizado para ilustrar visualmente o progresso das distintas etapas de um projeto, ou seja, o cronograma da obra. Nesse sentido, foram definidas as tarefas e subtarefas, estabelecendo suas interdependências e delineando a linha do tempo correspondente.

No contexto deste estudo, procedeu-se à avaliação do plano de execução da obra. Os critérios de avaliação incluíram a análise dos recursos utilizados, que abrangem a quantidade de equipamentos, como retroescavadeira, e a quantidade de funcionários, como pedreiros e serventes. Considerou-se o prazo de execução para os tubos de concreto e PEAD, levando em conta as equipes e equipamentos sugeridos, bem como a elaboração de um cronograma de serviços para cada atividade, no qual se determinou a duração de cada etapa do projeto.

4.3 Análises da Viabilidade Técnica

A abordagem metodológica empregada para a análise da viabilidade técnica baseou-se numa revisão bibliográfica, consultando e analisando as normas NBR 8890 (ABNT, 2020), NBR 17015 (ABNT, 2023), o manual fornecido pela Tigre ADS e o gráfico fornecido pela Kanaflex, visando a comparação de características técnicas como abrasão, resistência a impactos, peso, vida útil, eficiência hidráulica, ataque químico entre os tubos de concreto armado e polietileno. Após essas comparações, foi possível desenvolver os resultados deste trabalho científico.

5 RESULTADOS E DISCUSSÕES

5.1 Análise da Viabilidade Econômica

Com base no projeto fornecido pela empresa e os parâmetros e premissas estabelecidos previamente, foi viável conduzir uma análise do comparativo da viabilidade econômica entre os materiais empregados.

Na Tabela 17 é apresentado o comparativo de volume de escavação de vala para os tubos de concreto e tubos de PEAD para cada rua do projeto.

Tabela 17 - Volume de Escavação de Vala (m³)

Rua	Tubo de Concreto Armado	Tubo de PEAD
Rosa Azul	1.944,68 m³	1.048,68 m³
Agnaldo Dantas	365,26 m³	221,87 m³
Maria do Carmo	843,54 m³	385,11 m³
Estrada Lixeira	4.050,05 m ³	2.961,38 m ³
AV. Alexandre Alcino	1.598,25 m³	772,06 m³
Volume Total	8.801,79 m³	5.389,10 m³

Fonte: A autora (2023)

É possível observar na Tabela 17 que o volume de escavação necessário para os tubos de concreto é substancialmente maior em comparação ao tubo de PEAD, alcançando uma diferença de 38,77%. Isso se deve, provavelmente, às variações na largura de vala, conforme apresentado no item 3.6, e à profundidade da escavação, em decorrência dos distintos materiais utilizados.

Na Tabela 18 é apresentado o custo total para escavação referente aos tubos de concreto e tubo de PEAD.

Tabela 18 - Custo para Escavação de Vala (R\$)

Descrição	Custo Total	
Descrição -	Tubo de Concreto Armado	Tubo de PEAD
Escavação com retro- escavadeira de pneus, de valas, em material 1 categoria até 1,50 de profundidade	R\$ 64.117,72	R\$ 47.422,02
Escavação com retro- escavadeira de pneus, de valas, em material 1 categoria entre 1,50 e 3,00 m de profundidade	R\$ 24.488,84	R\$ 5.817,26
Custo Total	R\$ 88.606,56	R\$ 53.239,28

Observa-se que o custo de escavação para o tubo de concreto armado é 39,91% superior ao custo para o tubo de PEAD, representando uma diferença significativa. No estudo de caso de Maurer (2019) o volume de escavação para os tubos em concreto foi 68% maior comparado ao PEAD.

Na Tabela 19 é exibido o comparativo de área de escoramento de valas para os tubos de concreto e tubos de PEAD para cada rua do projeto.

Tabela 19 – Área de Escoramento de Vala Continuo (m²)

Rua	Tubo de Concreto Armado	Tubo de PEAD
Rosa Azul	1.681,36 m²	1.169,60 m ²
Agnaldo Dantas	407,40 m ²	338,40 m ²
Maria do Carmo	810,92 m ²	497,20 m ²
Estrada Lixeira	3.852,06 m ²	3.570,80 m ²
AV. Alexandre Alcino	1.655,33 m²	1.117,20 m ²
Área Total	8.407,07 m ²	6.693,20 m ²

Fonte: A autora (2023)

É evidente, ao analisar os dados que são apresentados na Tabela 19, que a área de escoramento é superior para o tubo de concreto armado, apresentando uma discrepância de 20,39% em relação ao tubo de PEAD. Essa diferença notável pode ser principalmente atribuída à variação na altura média de escavação exigida pelos distintos materiais. Já no trabalho de Maurer (2019) foi encontrado 43% de área de escoramento maior quando comparado com o tubo de PEAD.

Na Tabela 20 está apresentada uma comparação da área de apiloamento de fundo de vala necessário para os tubos de concreto e os tubos de PEAD em cada rua do projeto.

Tabela 20 – Área de Apiloamento de Fundo de Vala (m²)

Rua	Tubo de Concreto Armado	Tubo de PEAD
Rosa Azul	734,95 m²	578,91 m ²
Agnaldo Dantas	203,40 m ²	148,54 m²
Maria do Carmo	358,20 m ²	254,10 m ²
Estrada Lixeira	2472,90 m ²	1848,23 m²
AV. Alexandre Alcino	738,70 m ²	520,92 m ²
Área Total	4508,15 m ²	3350,70 m ²

Fonte: A autora (2023)

Ao examinar os dados que estão dispostos na Tabela 20, torna-se claro que a área de apiloamento necessária para o tubo de concreto armado é consideravelmente maior, apresentando uma discrepância de 25,67%. Essa

divergência pode ser, possivelmente, explicada pela variação na largura da vala para os mesmos diâmetros, devido à diferença nos materiais dos tubos.

Na Tabela 21 é apresentado o custo de escoramento e apiloamento para os tubos de concreto e tubo de PEAD.

Tabela 21 - Custo para Escoramento e Apiloamento de Vala (R\$)

Descrição	Tubo de Concreto Armado	Tubo de PEAD
Escoramento Contínuo com prancha metálica	R\$ 289.371,21	R\$ 230.379,94
Apiloamento manual de fundo de vala	R\$ 111.666,88	R\$ 82.996,79
Custo Total	R\$ 401.038,09	R\$ 313.376,73

Fonte: A autora (2023)

Percebe-se que o custo para executar os serviços de tubo de PEAD é 21,86 % menor se comparado ao tubo de concreto. Com isso, podemos perceber que o tubo de PEAD é vantajoso para esses serviços, podendo tornar mais econômica a obra.

Na Tabela 22 é apresentada uma comparação da quantidade de tubos com o mesmo diâmetro para os dois materiais analisados.

Tabela 22 - Assentamento de Tubo (Und)

Diâmetro (m)	Tubo de Concreto Armado	Tubo de PEAD
0,40	294 unidades	49 unidades
0,6	753 unidades	126 unidades
0,8	717 unidades	120 unidades
1,00	414 unidades	-
1,05	-	69 unidades
1,20	200 unidades	33 unidades
Quantidade Total de Tubo	2378 unidades	396 unidades

Fonte: A autora (2023)

Observa-se que a quantidade de tubos de PEAD é bem menor que a quantidade de tubos de concreto. Essa diferença é atribuída ao fato de que os tubos de PEAD possuem um comprimento de 6 metros, enquanto os tubos de concreto têm um comprimento de apenas 1 metro, o que explica essa discrepância.

Na Tabela 23 está apresentando um comparativo do preço de assentamento de tubo entre tubo de concreto armado e tubo de PEAD.

Tabela 23 - Orçamento para Fornecimento e Assentamento de Tubo (R\$)

Diâmetro (m)	Tubo de Concreto	Tubo de PEAD
0,40	R\$ 45.464,16	R\$ 99.345,54
0,60	R\$ 168.498,81	R\$ 434.450,88
0,80	R\$ 291.374,46	R\$ 616.340,37
1,00	R\$ 229.173,84	-
1,05	-	R\$ 632.658,24
1,20	R\$ 163.160,00	R\$ 384.044,00
Custo Total	R\$ 897.671,27	R\$ 2.166.839,03

Fonte: A autora (2023)

Conforme está evidenciado na Tabela 23, o custo para o fornecimento e assentamento de tubo de PEAD revelou-se quase três vezes superior em comparação ao tubo de concreto. Esse aumento expressivo pode ser atribuído à escassez de fabricantes desse material, à demanda de utilização, à ausência de concorrência de mercado para reduzir os preços e à necessidade de encomenda, que implica em um período de entrega de aproximadamente um mês. E está em concordância com o estudo desenvolvido por Pereira (2019), que apontou um custo de assentamento duas vezes maior para o tudo de PEAD. Na descoberta de Marrota (2022), foi indicado um custo de apenas uma vez superior ao tubo de concreto.

Na Tabela 24 é possível observar a comparação entre os volumes de reaterro dos materiais em questão.

Tabela 24 – Volume de Reaterro de Vala (m³)

Rua	Tubo de Concreto Armado	Tubo de PEAD
Rosa Azul	1685,94 m³	789,94 m³
Agnaldo Dantas	322,50 m ³	179,10 m³
Maria do Carmo	766,77 m³	308,34 m³
Estrada Lixeira	3414,49 m³	2325,81 m³
AV. Alexandre Alcino	1451,08 m³	624,89 m³
Volume Total	7640,77 m ³	4228,09 m ³

Fonte: A autora (2023)

Na Tabela 25 é possível observar a comparação entre os custos de reaterro dos materiais em questão.

Tabela 25 - Reaterro de Vala (R\$)

Descrição	Tubo de Concreto Armado	Tubo de PEAD
Custo Total	R\$ 176.043,34	R\$ 97.415,11

Nota-se que o valor obtido para os tubos de concreto é de R\$ 78.628,23 mais caro do que o custo de reaterro para tubo de PEAD, devido às diferenças nas especificações de largura e profundidade adotadas nas fontes utilizadas para o cálculo desses volumes, uma vez que estamos tratando de tubos fabricados com materiais distintos. Comparativamente, em um estudo anterior de Andrade (2022), foi identificada uma diferença de 69,93% a mais para os tubos de concreto. Por outro lado, no estudo de Pereira (2019), encontrou-se uma discrepância de 6,36% a mais para tubos de concreto em relação aos tubos de PEAD. No trabalho de Maurer (2019) foi encontrado 72% de reaterro maior para tubo de PEAD. Essas variações demonstram a relevância da escolha dos materiais no que diz respeito aos volumes de reaterro nas obras de drenagem. Vale salientar que a variação desse volume entre os dois tipos de tubos analisados, depende também das premissas adotadas para determinação das dimensões das valas.

No Gráfico 1 está exibindo um resumo comparativo dos custos individuais de cada serviço, assim como o custo total, tanto para tubos de concreto armado quanto para os tubos de PEAD.

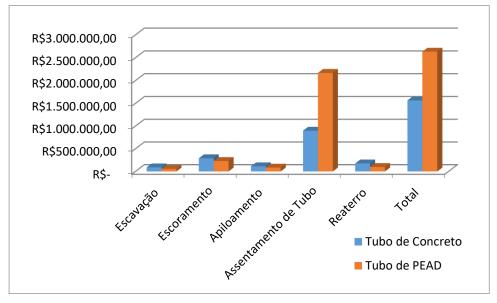


Gráfico 1 – Resumo comparativo de custo (R\$)

Fonte: A autora (2023)

Conforme evidenciado no Gráfico 1, o projeto com tubo de PEAD apresentou um custo final quase duas vezes superior em relação ao uso de tubos de concreto. Essa diferença é notadamente atribuída aos preços mais elevados dos tubos de PEAD quando comparados aos de concreto. No entanto, ao analisarmos outras

etapas da obra, torna-se evidente que o tubo de PEAD oferece vantagens econômicas consideráveis. Um aumento no número de fabricantes de tubo de PEAD pode, potencialmente, reduzir seus custos, tornando-se uma opção mais econômica no futuro em comparação ao tubo de concreto. No trabalho de Pereira (2019), também destacou uma redução de 49,95% no orçamento para tubos de concreto, diferença essa influenciada pelo custo elevado de fornecimento de tubo de PEAD. No entanto, para ambos os casos, os custos de escavação e reaterro mostraram-se extremamente benéficos.

5.2 Análises do Cronograma e Plano de Execução

Na Tabela 26 estão apresentadas as quantidades dos serviços que será necessário executar para realizar a obra com tubo de concreto e com tubo de PEAD.

Tabela 26 - Quantitativo das atividades para execução da drenagem por tubo de concreto e tubo de PEAD

Atividade	Tubo de Concreto	Tubo de PEAD	Unidade
Escavação de Vala até 1,5 m de profundidade	8801,79	5389,10	m³
Escoramento de Vala de			
1,5 a 3,0 m de profundidade	9016,30	6837,20	m²
Apiloamento de Vala	4508,15	3350,70	m²
Assentamento de Tubo	2378,00	2378,00	m
Reaterro	7640,77	4228,09	m³

Fonte: A autora (2023)

A partir desse quantitativo, as Tabelas de insumos já apresentadas e os Apêndices A e B, conseguiu-se montar a Tabela 27 com a duração das atividades considerando ambos os materiais.

Tabela 27 - Duração das atividades para execução da drenagem por tubo de concreto e tubo de PEAD (Unidade: Dias)

	Duração	
Atividade	Tubo de Concreto	Tubo de PEAD
Escavação de Vala – Rua Rosa	6	4
Azul		
Escavação de Vala - Rua	2	1
Agnaldo Dantas		
Escavação de Vala – Rua	3	2
Maria do Carmo Escavação de Vala – Rua		
Escavação de Vala – Rua Estrada da Lixeira	16	12
Escavação de Vala – Av.		
Alexandre Alcino	5	3
Escoramento de Vala – Rua		
Rosa Azul	8	5
Escoramento de Vala – Rua		
Agnaldo Dantas	2	2
Escoramento de Vala – Rua		
Maria do Carmo	4	2
Escoramento de Vala – Rua		
Estrada da Lixeira	18	17
Escoramento de Vala – Av.		
Alexandre Alcino	8	5
Apiloamento de Vala – Rua		
Rosa Azul	11	9
Apiloamento de Vala – Rua	_	_
Agnaldo Dantas	3	2
Apiloamento de Vala – Rua	•	•
Maria do Carmo	6	4
Apiloamento de Vala – Rua	20	
Estrada da Lixeira	39	29
Apiloamento de Vala – Av.	40	
Alexandre Alcino	12	8
Assentamento de Tubo – Rua	12	2
Rosa Azul	12	3
Assentamento de Tubo – Rua	1	1
Agnaldo Dantas	I	ı
Assentamento de Tubo – Rua	2	2
Maria do Carmo	2	<u> </u>
Assentamento de Tubo – Rua	35	6
Estrada da Lixeira		
Assentamento de Tubo – Av.	18	2
Alexandre Alcino		
Reaterro de Vala – Rua Rosa	6	3
Azul		<u> </u>
Reaterro de Vala – Rua	1	1
Agnaldo Dantas	-	•
Reaterro de Vala – Rua Maria	3	1
do Carmo		
Reaterro de Vala – Rua Estrada	13	9
da Lixeira		
Reaterro de Vala – Av.	6	2
Alexandre Alcino		

Conforme evidenciado na Tabela 27, observa-se uma redução significativa no cronograma para os tubos de PEAD em comparação com os tubos de concreto, especialmente no assentamento de tubos. Essa diferença pode ser atribuída à leveza do PEAD, eliminando a necessidade de maquinário para transporte do canteiro ao local da obra para os diâmetros deste projeto, além do comprimento estendido de 6 metros, que agiliza o processo. Na escavação, a redução é possível devido ao coeficiente de *Manning* menor do tubo de PEAD, que pode diminuir a profundidade de escavação. No apiloamento de vala, a redução na largura da vala comparada ao necessário para o tubo de concreto resulta em uma área menor para apiloar. O escoramento não apresentou grande diferença em termos de dias no cronograma. Quanto ao reaterro, há uma redução devido à diminuição do volume necessário para cada material, resultante das profundidades distintas de escavação entrem eles.

A partir do cronograma em dias já apresentado, conseguiu-se montar o plano de execução disposto na Tabela 28 apresentada a seguir:

Tabela 28 – Recursos das atividades para execução da drenagem por tubo de concreto e tubo de PEAD

(contínua)

Atividade	Rec	ursos
Atividade	Tubo de Concreto	Tubo de PEAD
Escavação de Vala – Rua Rosa Azul	2R + 2S	2R + 2S
Escavação de Vala – Rua Agnaldo Dantas	2R + 2S	2R + 2S
Escavação de Vala – Rua Maria do Carmo	2R + 2S	2R + 2S
Escavação de Vala – Rua Estrada da Lixeira	2R + 2S	2R + 2S
Escavação de Vala – Av. Alexandre Alcino	2R + 2S	2R + 2S
Escoramento de Vala – Rua Rosa Azul	8S	8S
Escoramento de Vala – Rua Agnaldo Dantas	8S	8S
Escoramento de Vala – Rua Maria do Carmo	8S	8S
Escoramento de Vala – Rua Estrada da Lixeira	8S	8S
Escoramento de Vala – Av. Alexandre Alcino	8S	8S
Apiloamento de Vala – Rua Rosa Azul	12S	12\$
Apiloamento de Vala – Rua Agnaldo Dantas	12S	12\$
Apiloamento de Vala – Rua Maria do Carmo	128	128

Tabela 29 – Recursos das atividades para execução da drenagem por tubo de concreto e tubo de PEAD

(conclusão)

Atividada	Recursos				
Atividade —	Tubo de Concreto	Tubo de PEAD			
Apiloamento de Vala – Rua Estrada da Lixeira	12S	12S			
Apiloamento de Vala – Av. Alexandre Alcino	12S	12S			
Assentamento de Tubo – Rua Rosa Azul	1E + 1S	3P + 3S			
Assentamento de Tubo – Rua Agnaldo Dantas	1E + 1S	3P + 3S			
Assentamento de Tubo – Rua Maria do Carmo	1E + 1 S	2P + 2 S			
Assentamento de Tubo – Rua Estrada da Lixeira	2E + 2S	6P + 6 S			
Assentamento de Tubo – Av. Alexandre Alcino	1E + 1S	6P + 6 S			
Reaterro de Vala – Rua Rosa Azul	2C+2S	2C+2S			
Reaterro de Vala – Rua Agnaldo Dantas	2C+2S	2C+2S			
Reaterro de Vala – Rua Maria do Carmo	2C+2S	2C+2S			
Reaterro de Vala – Rua Estrada da Lixeira	2C+2S	2C+2S			
Reaterro de Vala – Av. Alexandre Alcino	2C+2S	2C+2S			
Retroescavadeira Servente Escavadeira					

Fonte: A autora (2023)

Analisando a Tabela 28, observa-se que, para os serviços de escavação, escoramento, apiloamento e reaterro, a mesma equipe foi designada para a obra de drenagem utilizando ambos os materiais. Ao examinar a Tabela 27, destaca-se que, mesmo com a equipe inalterada, os tubos de PEAD apresentaram uma redução nos dias necessários para a execução dos serviços. Essa diminuição está associada à redução nos quantitativos nessas atividades. No entanto, no caso do assentamento de tubos, nota-se que será necessário uma equipe com mais pedreiros e serventes para o PEAD, em comparação com o tubo de concreto, que utiliza uma escavadeira e servente. Apesar disso, em termos de recursos, o PEAD é mais vantajoso, pois a comparação entre a compra ou aluguel de maquinário e o valor pago aos trabalhadores favorece o uso da equipe.

^c Compactador

Considerando o volume de serviço previsto e as condições favoráveis durante a execução, e seguindo o cronograma estabelecido, foi possível desenvolver os diagramas de Gantt para o tubo de concreto e o tubo de PEAD, conforme apresentado nos Apêndices C e D. Ao analisar os gráficos, observa-se que o tubo de concreto apresentou um prazo de 192 dias uteis enquanto o tubo de PEAD apresentou um prazo de 113 dias úteis, apresentando uma redução de 41,15 % no prazo da obra ao optar pelo tubo de PEAD, levando em conta as equipes e equipamentos adotados previamente mencionados. Essa redução é provavelmente atribuída à característica leve dos tubos de PEAD, facilitando o processo de assentamento e pelos resultados já mencionados nos quantitativos levantados.

5.3 Análises da Viabilidade Técnica

No Gráfico 2 está apresentada a resistência a abrasão de diferentes materiais.

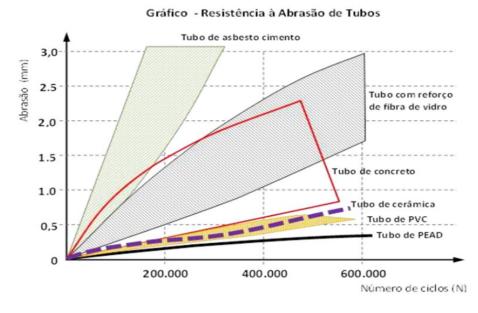


Gráfico 2 - Gráfico de Resistência à abrasão

Fonte: Kanaflex (2019)

Devido à sua ductilidade e notável resistência ao alongamento na ruptura, o tubo de PEAD tem a capacidade de se deformar sem quebrar ou trincar, adaptandose aos movimentos e acomodações do solo. Conforme ilustrado no Gráfico 2, o PEAD demostra uma resistência à abrasão excepcional devido à sua natureza dúctil

e excelente resistência ao alongamento de ruptura, permitindo que se deforme sem desenvolver trincas em resposta aos movimentos eventuais do solo

Com base na revisão bibliográfica, foi possível desenvolver o Quadro 1. Neste quadro, é apresentada a exposição das características que foram objeto de estudo, proporcionando uma visão clara das análises realizadas.

Quadro 1 - Comparativo técnico entre Tubo de PEAD e Tubo de Concreto

Características	Tubo de PEAD	Tubo de Concreto Armado
Resistência contra quebras e danos	Alta	Baixa
Peso	800 mm =190 kg	800 mm = 668 kg
Vida útil	75 anos	30 anos
Eficiência Hidráulica	Manning – 0,009 a 0,012	Manning – 0,013 a 0,017
Quimicamente inerte	pH varia de 1,5 a 14	pH varia de 3 a 12

Fonte: Adaptado de Tigre ADS (2018) e FK Comércio (2023)

Analisando a resistência contra quebras e danos, observa-se que o tubo de PEAD apresenta uma alta resistência, resultando em significativa redução nas perdas de material comparando aos tubos de concreto, que frequentemente sofrem danos durante o lançamento nas valas. Essa alta resistência, permite uma instalação com menor recobrimento e largura de vala, gerando uma economia considerável na movimentação de terra, como evidenciado no comparativo de custos na seção 5.1.

Quanto ao peso, observa-se que o tubo de concreto é 71,55% mais pesado que o tubo de PEAD, considerando o mesmo diâmetro. Essa diferença se deve à leveza do polietileno em comparação com o concreto, resultando em uma redução significativa nos riscos de acidentes e facilitando o transporte, tornando o processo de instalação mais rápido e a execução mais leve.

No que diz respeito à vida útil, constata-se que o tubo de PEAD é superior a 60% o tubo de concreto, prolongando os intervalos entre os processos de manutenção. Essa superioridade pode ser atribuída à maior facilidade do tubo de concreto a ataques químicos e corrosão ao longo do tempo. Embora o PEAD apresente uma resistência química e durabilidade superiores, devido ao fato de o polietileno possuir uma estrutura apolar similar ao dos hidrocarbonetos parafínicos, é importante reconhecer a possibilidade de influência de compostos químicos em condições adversas.

O tubo de PEAD apresenta uma melhor eficiência hidráulica, já que o interior da parede deste tubo é liso, proporcionando um excelente desempenho hidráulico comparado ao tubo de concreto. Isso pode resultar na redução dos diâmetros e na redução na declividade de instalação, devido à menor rugosidade interna, conforme evidenciado no quadro pelos diferentes coeficientes de *Manning*.

6 CONCLUSÃO

No comparativo de custos, o sistema de drenagem com tubos de concreto mostrou-se mais viável, sendo mais econômico em torno de 40,58% comparado ao custo do tubo de PEAD. Mesmo o sistema com PEAD tendo reduzido o volume dos serviços de escavação, escoamento, apiloamento e reaterro, o que pesou negativamente foi o elevado custo dos tubos, fato que pode ser contornado com a redução dos custos desse material.

Analisando os cronogramas de execução, percebe-se que o tubo de PEAD mostrou-se mais viável, tendo em vista que, consegue reduzir em 2 meses a duração de execução do projeto. Tal fato justifica-se pela leveza do material, o que facilita o transporte e o manuseio, resultando em uma alta produtividade de execução do assentamento, além de reduzir os riscos de acidente durante a obra.

Comparando as caractetisticas técnicas dos dois materiais analisados, o tubo de PEAD revelou-se mais vantajoso em comparação ao tubo de concreto, destacando aspectos como vida útil, que se constatou que este tubo é supeior em torno de 60% o tubo de concreto, eficiência hidráulica e resistência a impactos. A longo prazo seu custo maior pode ser diluido, tendo em vista a utilização da rede de drenagem por mais tempo, menores custos de manutenção e menores ocorrências de dano a pavimentos decorrentes de quebras.

A expectativa é que um aumento no número de fabricantes e fornecedores impulsione a competitividade no mercado, potencialmente reduzindo os custos dos tubos de PEAD. Este cenário pode incentivar as construtoras e os órgãos governamentais a explorarem mais as vantagens que o material proporciona. Contudo, deve-se reconhecer que a preferência pelo tubo de concreto muitas vezes está relacionada à maior facilidade de aquisição e entrega, e menor custo, ressaltando a importância de ampliar a conscientização sobre as vantagens do PEAD no setor.

REFERÊNCIAS

AGÊNCIA NACIONAL DE ÁGUAS E SANEAMENTO BÁSICO. Legislação Federal Relacionada ao Saneamento Básico. 2020. Disponível em: https://www.gov.br/ana/pt-br/assuntos/saneamento-basico/legislacao-federal-saneamento-basico. Acesso em: 11 jun. 2023.

ANDRADE, E. A. **Comparativo entre Tubo de PEAD e Tubos de Concreto para Drenagem Pluvial**. 2022. 41f. Trabalho de conclusão de curso (Graduação em Engenharia Civil) – Universidade do Sul de Santa Catarina, Palhoça, 2022.

ARACAJU. Prefeitura Municipal de Aracaju. **Plano Diretor de Desenvolvimento Urbano de Aracaju**. 2000. Lei Complementar Nº 42 de 04 de outubro de 2000. Disponível em: https://www.aracaju.se.gov.br/ Acesso em: 11 jun. 2023.

ASKELAND, D. R.; WRIGHT, W. J. **Ciência e Engenharia dos Materiais**. 3. ed. São Paulo: Cengage Learning, 2019.550p. Tradução da 4ª Edição Norte – Americana.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 15645**: Execução de obras utilizando tubos e aduelas pré-moldados em concreto. 2 ed. Rio de Janeiro: ABNT, 2020. 41p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 17015**: Execução de obras lineares para transporte de água bruta e tratada, esgoto sanitário e drenagem urbana, utilizando tubos rígidos, semirrígidos e flexíveis. 2 ed.Rio de Janeiro: ABNT, 2023.122p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7676**: Elementos de vedação com base elastómérica termofixa para tubos, conexões, equipamentos, componentes e acessórios para água, esgotos, drenagem e águas pluviais e água quente - Requisitos. 2 ed. Rio de Janeiro: ABNT, 2019. 35p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8890**: Tubo de concreto de seção circular para água pluvial e esgoto sanitário - Requisitos e métodos de ensaios. 4 ed.Rio de Janeiro: ABNT, 2020.41p.

ASSOCIAÇÃO BRASILEIRA DE TUBOS POLIOLEFÍNICOS E SISTEMAS. **Manual de Boas Práticas**. 2013. Disponível em: http://www.abpebrasil.com.br/default.asp?pg=1&cod=7. Acesso em: 30 maio 2023.

AZEVEDO NETTO, J. M. de. **Manual de Hidráulica**. 8. ed. São Paulo: Edgard Blucher, 1998. 669 p. Coordenação Roberto de Araújo; Coautores Miguel Fernandez y Fernandes, Roberto de Araújo, Acácio Eiji Ito.

BRANDI Artefatos de cimento. **Meio Fio**. 2023. Disponível em: https://brandi.ind.br/meiofio. Acesso em: 27 maio 2023.

CANHOLI, A. P. **Drenagem urbana e controle de enchentes**: edição ampliada e atualizada. 2. ed. São Paulo: Oficina de Textos, 2016. 384p.

- CONSTRUMARKET. **Poço de Visita**. 2023. Disponível em: https://www.aecweb.com.br/produto/poco-de-visita-fermix/47360. Acesso em: 1 jun.2023.
- FK COMÉRCIO. **Tubo de Concreto**. 2023. Disponível em: http://www.fkcomercio.com.br/tubo_de_concreto.html . Acesso em: 1 dez. 2023.
- GOLDMAN, P.. Introdução ao planejamento e controle de custos na construção civil brasileira. 4. ed. São Paulo: Pini, 2004. 176p.
- GRIBBIN, J. E. Introdução a hidráulica, hidrologia e gestão de águas pluviais. 4. ed. São Paulo: Cengage Learning, 2017. 526p.
- KANAFLEX. **Tubo Corrugado PEAD**. 2019. Disponível em: https://www.kanaflex.com.br/novosite/index.jsp. Acesso em: 27 maio 2023.
- MARCHIONI, M.; SILVA, C. O.. Pavimento intertravado permeávelmelhores práticas. **Associação Brasileira de Cimento Portland (ABCP**), São Paulo, p. 01-08, 2011. Disponível em: <file:///C:/Users/abnt_/Downloads/PR2_Conceitos_requisitos_pav_permeavel.pdf> . Acesso em: 1 dez. 2023.
- MAROTTA, T. S. **Drenagem Pluvial: Tubos de PEAD Versus Tubos de Concreto.** 2022. 33f. Trabalho de conclusão de curso (Graduação em Engenharia Civil) Universidade Estadual Paulista "Júlio de Mesquita Filho", Ilha Solteira, 2022.
- MATTOS, A. D. **Como Preparar Orçamentos de Obras**. 3. ed . São Paulo: Oficina de Textos, 2019. 328p.
- MATTOS, A. D. **Planejamento e Controle de Obras**. 1. ed. São Paulo: Pini, 2010. 428p.
- MAURER, L. R. F. Análise Comparativa de Custos entre Redes em PEAD e Concreto para Sistemas de Drenagem em Loteamento. 2019. 75 f. Trabalho de conclusão de curso (Graduação em Engenharia Civil) Universidade do Vale do Rio dos Sinos Unisinos, São Leopoldo, 2019.
- MIGUEZ, M.; VERÓL, A. P.; REZENDE, O. M. **Drenagem Urbana: Do projeto tradicional à sustentabilidade**. Barueri: GEN LTC, 2015. 384 p. (E-book).
- NUNES, M. **Dimensionamento de Sarjeta para Drenagem Superficial**. 2016. Disponível em: https://portaldoprojetista.com.br/dimensionamento-de-sarjeta-paradrenagem-superficial/. Acesso em: 27 maio 2023.
- PEREIRA, J. G. Análise Comparativa da Viabilidade Técnica, Econômica e Financeira Utilizando Manilhas de Concreto e Tubo Corrugado PEAD para Drenagem Urbana. 2019. 48f. Trabalho de conclusão de curso (Graduação em Engenharia Civil) –Universidade Estadual da Paraíba, Araruna, 2019.

- PINTO, J. A.; RIBEIRO JUNIOR, L. U. Contribuição para o dimensionamento de sistemas de microdrenagem urbana. **Científic@ Universitas**, Itajubá, v. 4, n. 2, p. 16-30, dez. 2017. Disponível em: http://revista.fepi.br/revista/index.php/revista/article/view/526. Acesso em: 11 jun. 2023.
- PINTO, N. L. de S. et al. **Hidrologia Básica**. 1. ed. São Paulo: Edgard Blucher, 2017. 278p.
- PRATES, C. L. Drenagem de Águas Pluviais: Estudo de Caso de um Trecho de uma rua movimentada da capital mineira na região noroeste. 2023. 67f. Monografia (Especialização em Construção Civil) Universidade Federal de Minas Gerais, Belo Horizonte, 2023.
- SANTOS, J. M. ProjectLibreSoftware Review: Overview Features Pricing.Obtido de Project Management, 2018. Disponível em :https://projectmanagement.com/projectlibre-software-review/. Acesso em: 11 jun. 2023.
- SANTOS, V. S. dos (ed.). **Ciclo da Água**. 2023. Disponível em: https://mundoeducacao.uol.com.br/biologia/ciclo-agua.htm. Acesso em: 11 jun. 2023.
- SECRETARIA DA INFRAESTRUTURA DO CEARÁ (SEINFRA). **Tabela de Custos**. 2023. Disponível em: www.seinfra.ce.gov.br/Tabela-de-custos/. Acesso em: 20 out. 2023
- SERGIPE. COMPANHIA ESTADUAL DE HABITAÇÃO E OBRAS PÚBLICAS. . ORSE Orçamento de Obras de Sergipe. 2023. Disponível em: http://orse.cehop.se.gov.br/. Acesso em: 10 out. 2023.
- SISTEMA NACIONAL DE PESQUISA DE CUSTOS E ÍNDICES DA CONSTRUÇÃO CIVIL (SINAPI). Caderno técnico de composições para assentamento de tubos de esgoto ou drenagem pluvial em concreto. 2022. Disponível em: https://www.caixa.gov.br/site/Paginas/downloads.aspx. Acesso em: 28 out. 2023.
- TCPO. **Tabela de Composições de Preços para Orçamentos**. 13. ed. São Paulo: Pini, 2010. 558p.
- TETRACON. **Meio Fio de Concreto Pré-moldado e in loco**. 2021. Disponível em: https://tetraconind.com.br/blog/meio-fio-de-concreto-pre-moldado-e-in-loco/. Acesso em: 27 maio 2023.
- TIGRE ADS. **Drenagem Pluvial em PEAD**. 2018. Disponível em: https://www.tigre-ads.com/brasil/aplicacoes/drenagem-pluvial/?gclid=EAlalQobChMloLyGk8-Z_wIVGDKRCh3ROwEuEAAYASACEglQkvD_BwE . Acesso em: 29 maio 2023.
- TIGRE ADS. **Manual de bolso para instalação de tubos corrugados**. 2018. Disponível em:zhttps://www.tigre-ads.com/brasil/arquivos-parabaixar/?gclid=EAlalQobChMloLyGk8Z_wlVGDKRCh3ROwEuEAAYASABEgKXifD_B wE . Acesso em: 29 maio 2023.

TISAKA, M. **Orçamento na Construção Civi**l: consultoria, projeto e execução. 2. ed. São Paulo: Pini, 2011. 470p.

TOMAZ, P. **Manejo de águas pluviais**. São Paulo: Navegar, 2015. *E-book*. Disponível em: https://www.pliniotomaz.com/shop?page=3. Acesso em: 12 dez.2023.

TUCCI, C. E. M. (org.). **Hidrologia**: ciência e aplicação. 4. ed. Porto Alegre: UFRGS Editora: ABRH, 2009. 943p.

APÊNDICE A – QUADRO DE DURAÇÃO/ RECURSO: DRENAGEM COM TUBOS DE CONCRETO

(contínua)

Atividade	Und	Qtde.	Equipe Básica	Índice	Qtde. Equipes (Adotada)	Recursos	Duração (dias)
Escavação de Vala – Rua Rosa Azul	m³	1944,68	1R + 1S	0,0704 h/m³ 0,019 h/m³	2	2R + 2S	6
Escavação de Vala – Rua Agnaldo Dantas	m³	365,26	1R + 1S	0,0704 h/m³ 0,019 h/m³	2	2R + 2S	2
Escavação de Vala – Rua Maria do Carmo	m³	843,54	1R + 1S	0,0704 h/m³ 0,019 h/m³	2	2R + 2S	3
Escavação de Vala – Rua Estrada da Lixeira	m³	4050,06	1R + 1S	0,0704 h/m³ 0,019 h/m³	2	2R + 2S	16
Escavação de Vala – Av. Alexandre Alcino	m³	1598,25	1R + 1S	0,0704 h/m³ 0,019 h/m³	2	2R + 2S	5
Escoramento de Vala – Rua Rosa Azul	m²	1681,36	1S	0,30 h/m²	8	8S	8
Escoramento de Vala – Rua Agnaldo Dantas	m²	407,40	1S	0,30 h/m²	8	8S	2
Escoramento de Vala – Rua Maria do Carmo	m²	810,92	1S	0,30 h/m²	8	8S	4
Escoramento de Vala – Rua Estrada da Lixeira	m²	3852,06	1S	0,30 h/m²	8	8S	18
Escoramento de Vala – Av. Alexandre Alcino	m²	1655,33	1S	0,30 h/m²	8	8S	8
Apiloamento de Vala – Rua Rosa Azul	m²	734,95	1S	1,5 h/m²	12	12S	11
Apiloamento de Vala – Rua Agnaldo Dantas	m²	203,40	1S	1,5 h/m²	12	12S	3
Apiloamento de Vala – Rua Maria do Carmo	m²	356,20	1S	1,5 h/m²	12	12S	6
Apiloamento de Vala – Rua Estrada da Lixeira	m²	2472,90	1S	1,5 h/m²	12	12S	39
Apiloamento de Vala – Av. Alexandre Alcino	m²	738,70	1S	1,5 h/m²	12	12S	12
Assentamento de Tubo – Rua Rosa Azul	m	325	1 E + 1 S	0,423 (0,80m) 0,6495 (1,20 m) 0,136 (1,00 m)	1	1E+1S	12

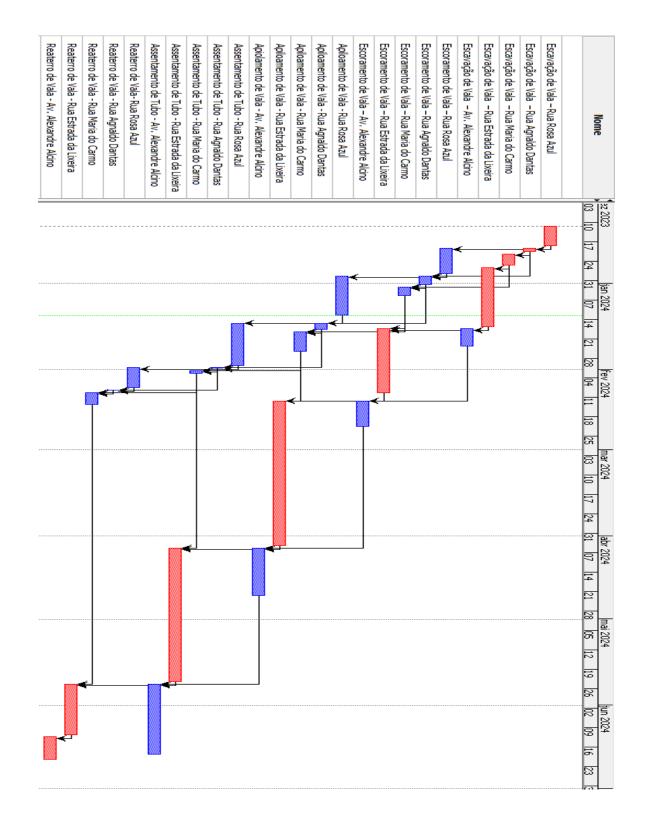
APÊNDICE A – QUADRO DE DURAÇÃO/ RECURSO: DRENAGEM COM TUBOS DE CONCRETO

(conclusão)

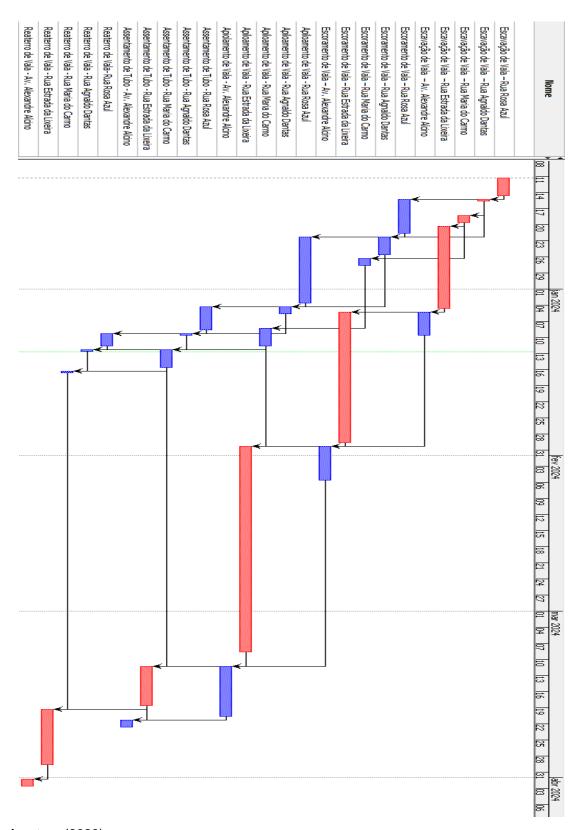
	(conci						onciusao)
Atividade	Und	Qtde.	Equipe Básica	Índice	Qtde. Equipes (Adotada)	Recursos	Duração (dias)
Assentamento de Tubo – Rua Agnaldo Dantas	m	114	1 E + 1 S	0,027 (0,60m) 0,054 (0,80 m)	1	1E+1S	1
Assentamento de Tubo – Rua Maria do Carmo	m	196	1 E + 1 S	0,054 (0,80m) 0,027 (0,60 m) 0,229 (0,40 m)	1	1E+1S	2
Assentamento de Tubo – Rua Estrada da Lixeira	m	1334	1E+1 S	0,326 (0,60m) 0,423 (0,80 m) 0,6495 (1,20 m) 0,519(1,00 m) 0,346(0,40 m)	2	2E+2S	35
Assentamento de Tubo – Av. Alexandre Alcino	m	409	1E+1 S	0,423 (0,80m) 0,326 (0,60 m) 0,229(0,40 m)	1	1E+1S	18
Reaterro de Vala – Rua Rosa Azul	m³	1685,94	1C+1S	0,061 h/m³	2	2C+2S	6
Reaterro de Vala – Rua Agnaldo Dantas	m³	322,50	1C+1S	0,061 h/m³	2	2C+2S	1
Reaterro de Vala – Rua Maria do Carmo	m³	766,77	1C+1S	0,061 h/m³	2	2C+2S	3
Reaterro de Vala – Rua Estrada da Lixeira	m³	3414,49	1C+1S	0,061 h/m³	2	2C+2S	13
Reaterro de Vala – Av. Alexandre Alcino	m³	1451,08	1C+1S	0,061 h/m³	2	2C+2S	6
Retroescavadeira Servente Escavadeira Compactador							

APÊNDICE B – QUADRO DE DURAÇÃO/ RECURSO: DRENAGEM COM TUBOS **DE PEAD**

							(contínua)
Atividade	Und	Qtde.	Equipe Básica	Índice	Qtde. Equipes (Adotada)	Recursos	Duração (dias)
Escavação de Vala – Rua Rosa Azul	m³	1048,67	1R + 1S	0,0704 (h/m³) 0,019(h/m³)	2	2R + 2S	4
Escavação de Vala – Rua Agnaldo Dantas	m³	221,87	1R + 1S	0,0704 (h/m³) 0,019(h/m³)	2	2R + 2S	1
Escavação de Vala – Rua Maria do Carmo	m³	385,12	1R + 1S	0,0704 (h/m³) 0,019(h/m³)	2	2R + 2S	2
Escavação de Vala – Rua Estrada da Lixeira	m³	2961,38	1R + 1S	0,0704 (h/m³) 0,019(h/m³)	2	2R + 2S	12
Escavação de Vala – Av. Alexandre Alcino	m³	772,06	1R + 1S	0,0704 (h/m³) 0,019(h/m³)	2	2R + 2S	3
Escoramento de Vala – Rua Rosa Azul	m²	1169,60	1S	0,30 (h/m²)	8	8S	5
Escoramento de Vala – Rua Agnaldo Dantas	m²	338,40	1S	0,30 (h/m²)	8	8S	2
Escoramento de Vala – Rua Maria do Carmo	m²	497,20	1S	0,30 (h/m²)	8	8S	2
Escoramento de Vala – Rua Estrada da Lixeira	m²	3570,80	1S	0,30 (h/m²)	8	8S	17
Escoramento de Vala – Av. Alexandre Alcino	m²	1117,20	1S	0,30 (h/m²)	8	8S	5
Apiloamento de Vala – Rua Rosa Azul	m²	578,91	1S	1,5 h/m²	12	12S	9
Apiloamento de Vala – Rua Agnaldo Dantas	m²	148,54	1S	1,5 h/m²	12	12S	2
Apiloamento de Vala – Rua Maria do Carmo	m²	254,10	1S	1,5 h/m²	12	12S	4
Apiloamento de Vala – Rua Estrada da Lixeira	m²	1848,23	1S	1,5 h/m²	12	12S	29
Apiloamento de Vala – Av. Alexandre Alcino	m²	520,92	1S	1,5 h/m²	12	12S	8


APÊNDICE B – QUADRO DE DURAÇÃO/ RECURSO: DRENAGEM COM TUBOS DE PEAD

(conclusão)


								(Concluse	aU)
Atividade	Und	Qtde.	Equipe Básica					Duraçã (dias)	
Assentamento de Tubo – Rua Rosa Azul		m	325	1P + 1 S	0,423 (0,80m) 0,6495 (1,20 m) 0,136 (1,00 m)	3	3P + 3S	3	
Assentame Rua Agn			m	114	1P + 1 S	0,027 (0,60m) 0,054 (0,80 m)	3	3 P + 3S	1
Assentame Rua Mari			m	196	1 P + 1 S	0,054 (0,80m) 0,027 (0,60 m) 0,229 (0,40 m)	2	2 P + 2 S	2
Assentame Rua Estra			m	1334	1P+1 S	0,326 (0,60m) 0,423 (0,80 m) 0,6495 (1,20 m) 0,519(1,00 m) 0,346(0,40 m)	6	6P+6 S	6
Assentamento de Tubo – Av. Alexandre Alcino		m	409	1P+1 S	0,423 (0,80m) 0,326 (0,60 m) 0,229(0,40 m)	6	6P+6 S	2	
Reaterro d Ros	le Vala sa Azul	– Rua	m³	789,94	1C+1S	0,061 h/m³	2	2C+2S	3
Reaterro d Agnald	le Vala do Danta		m³	179,10	1C+1S	0,061 h/m³	2	2C+2S	1
Reaterro d Maria	le Vala do Carn		m³	308,34	1C+1S	0,061 h/m³	2	2C+2S	1
Reaterro d Estrada			m³	2325,81	1C+1S	0,061 h/m³	2	2C+2S	9
Reaterro de Vala – Av. Alexandre Alcino		m³	624,89	1C+1S	0,061 h/m³	2	2C+2S	2	
Retroesca Servente Escavadei	ra								

^C Compactador

APÊNDICE C – DIAGRAMA DE GANTT PARA DRENAGEM COM TUBOS DE CONCRETO

APÊNDICE D – DIAGRAMA DE GANTT PARA DRENAGEM COM TUBOS DE PEAD

