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Abstract. The phase transition of a random mixed-bond Ising ferromagnet on a cubic lattice
model is studied both numerically and analytically. In this work, we use the Metropolis and Wolff
algorithm with histogram technique and finite size scaling theory to simulate the dynamics of
the system. We obtained the thermodynamic quantities such as magnetization, susceptibility,
and specific heat. Our results were compared with those obtained using a new technique in
effective field theory that employs similar probability distribution within the framework of two-
site clusters.

1. Introduction
The study of the effects of disorder in magnetic systems has been an object of intense
investigations during the last five decades.

The Monte Carlo technique is an useful tool which in many cases, gives better results
regarding other methods from analytical approximations. The influence of quenched, random
disorder on phase transitions is of great importance in a large variety of fields [1]. For pure
systems exhibiting a continuous phase transition, Harris [2] derived the criterion that random
disorder is a relevant perturbation when the exponent of the specific heat of the pure system is
positive, α > 0. In this case one expects that the system falls into a new universality class with
critical exponents governed by a disordered fixed point. For α < 0 disorder is irrelevant, and in
the marginal case α = 0 no prediction can be made.

Since for the three-dimensional (3D) Ising model it is well known that α > 0, quenched,
random disorder should be relevant for this model. In three dimensions (3D) most of the
computer simulation studies have concentrated mainly on the site-diluted Ising model [3, 12].

In this work, we study the Ising model with mixed-bond by using of Monte Carlo simulation,
applying the algorithm cluster of Wolff [5].

2. Model and Simulation Setup
We study the spin 1/2 ferromagnetic Ising mixed-bond model defined by the following
Hamiltonian

βH =
∑

〈ij〉
Kijσiσj (σi = ±1), (1)
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where the sum extends over all pairs of neighboring sites on a cubic lattice of linear size L with
periodic boundary conditions, β = 1/kBT and the exchange couplings Kij are allowed to take
two different values Kij = K ≡ J/kBT and 0. The interactions are assumed to be independent
random variables with the probability distribution

P (Kij) = pδ(Kij −K) + (1− p)δ(Kij − λK), (2)

where p is the concentration of magnetic bonds in the system bonds such that p = 1 corresponds
to the pure case and λ is the competition parameter with |λ| ≤ 1.

The simulations were performed on a set of following lattice sizes L = 10, 16, 20, 26, 30, 36,
40 with periodic boundary conditions. The aim of the first set of simulations is to estimate the
critical temperature of the model at different L. Due to the finite-size scaling theory [6], the
finite system of linear size L will demonstrate an evidence of a critical behavior at a certain
temperature TC(L) which differs from the critical temperature of the infinite system TC(∞) [7].

TC(L) = TC(∞) + αL−1/v + ..., (3)

where the correction-to-scaling terms have been omitted.
The static thermodynamic quantities of interest include the average magnetization M and

the magnetic susceptibility χ

M =
1
n

n∑

i=1

σi, (4)

χ =
1

kBT
[〈M2〉 − 〈M〉2]. (5)

The phase diagram is obtained numerically from the maxima of a diverging quantity. Here
we choose the magnetic susceptibility, since the stability of the disordered fixed point implies
that the specific heat exponent is negative in the random system [8, 9]. Thus, the error in this
quantity is larger than for the susceptibility. To get an accurate determination of the maxima of
the susceptibility, we used the histogram reweighting technique with 2500 Monte Carlo sweeps
(MCS) and between 2500 and 5000 samples of disorder. The number of Monte Carlo sweeps
is justified by the increasing behavior of the energy autocorrelation time, τE , and we chose for

Figure 1. Magnetization vs. kBT/J for the Ising model with L = 15, 20 and 30 in a cubic
lattice with λ = −0.1.
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each size at least 250 independent measurements of the physical quantities (NMCS > 250 τE).
The choice of NMCS is justified by the increasing behavior of the energy autocorrelation time
τE as a function of p and L. At the critical point of a second-order phase transition one expects
a finite-size scaling (FSS) behavior τE ∝ Lz, where z is the dynamical critical exponent

3. Results
The figure 1 displays curves of magnetization versus temperature through computational
simulation for λ = −0.1 and L = 15, 20 and 30. The critical temperature obtained when
p = 1 was TC = 4.510 it is close of the expected value TC = 4.51.[10] We observe that the curves
keep the same behavior, in spite of in the proximities of the critical point they move away each
other. The critical point was estimated of the inflection of the curve. It can be notice that
increasing the lattice size, i.e. the value of L, we get more precision to estimate the critical
temperature. For comparison we have drawn, however, a simple effective-field approximation
estimate of the temperature dependence of magnetization for several p-values, it gives very good
agreement with the simulated transition line over the full temperature range.
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Figure 2. χ vs. kBT/J for the Ising model with λ = −0.4 and L = 40 for several concentrations
p.

The magnetic susceptibility as a function of temperature for different p values and for
λ = −0.4 and L = 40 is shown in Fig. 2. The peaks are sharper for lower p values. In
order to p < 0.65 and λ = −0.4 the susceptibility does not displays the peak associate with the
magnetic transition due to competitions of the exchange interactions. When λ ≥ 0 the system
presents always ferromagnetic long range order. We used the histogram reweighting technique
with 2500 Monte Carlo sweeps (MCS) and between 2500 and 5000 samples of disorder to get an
accurate determination of the maxima of the susceptibility.

The phase diagram obtained from the location of the maxima of the susceptibility for the
largest lattice size (L = 40) as a function of the concentration of magnetic bonds is shown in
Fig. 3 for λ=0, 0.1, 0.2, 0.5, -0.2 and -0.4. Solid lines are the predictions of the effective field
approximation. A very good agreement with the simulated transition line is obtained.

The reduced fourth-order Binder cummulants[11] supply an alternative method to estimated
critical points that can be determined from the crossing point of the cumulants for different
lattice sizes. It is calculated by using
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Figure 3. Phase diagram of the 3D mixed-bond Ising model compared with the effective field
approximation.

U4 = 1−
[〈

m4
〉]

3
[
〈m2〉2

] ,

where [...] denotes the average over disorder and 〈...〉 refers at the thermal average. As an
example, we show in Fig 4 the Temperature dependence of the reduced fourth-order Binder
cummulant for p = 1 and for various lattice sizes. Critical temperature obtained from this figure
is in agreement with those obtained of the maxima of the magnetic susceptibility.

The peak locations of the maxima susceptibility for each L are plotted versus L−1/ν , where
the value of ν is determined of the linear fit of log-log plot ∂UL

∂T vs L (not shown here). The critical
temperature can be estimated from an infinite-size extrapolation in according with Eq.(3). We
illustrate this procedure in Fig 5 for λ = 0.5 and p = 0.4, the linear fit gives TC = 3.1065(3).
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Figure 4. Fourth-order Binder cumulant U4 vs. kBT/J , for different lattice sizes as indicated
in figure.
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Figure 5. Size-dependent critical temperature TC(L)vs. L−1/ν , for λ = 0.5 and p = 0.4.

Table 1. Critical exponents for three dilutions and λ = 0.5.

p 1 0.8 0.6 0.4
1/ν 1.591(7) 1.68(7) 1.63(4) 1.56(3)
β/ν 0.4920(5) 0.49(1) 0.50(13) 0.496(5)
γ/ν 2.008(6) 2.06(3) 1.950(6) 2.001(6)

The average magnetization m and the magnetic susceptibility χ scale with the lattice size as:

m ∼ amL−β/ν , χ ∼ aχLγ/ν, (6)

here am and aχ are non-universal amplitudes. From these power-laws we extracted the exponents
β and γ plotting in logarithm scale the lattice size dependence of the susceptibility and average
magnetization. The critical exponents obtained to p = 0.4, 0.6, 0.8 and λ = 0.5 are listed
in Table I. The critical exponents oscillate without having an apparent correlation with the
dilution. One can note that they are pretty close of those obtained for disordered Ising model
[12]

4. Conclusion
We carried out Monte Carlo simulations for study the influence of bond dilution on the critical
properties of the Ising Model applied for cubic lattice. We obtained thermodynamic parameters
for |λ| ≤ 1.

Satisfactory results are obtained using the algorithm of Wolff and showed that this technique
is appropriated to treat the Mixed-bond problem. On the other hand, the Monte Carlo technique
results gives very good agreement with the effective field theory data.

The critical behavior of the mixed-bond model is governed by the same universality class as
the site-diluted model and pure Ising model.
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[9] L. E. Zamora, G. A. Pérez Alcázar, A. W. Bohórquez, A. A. Rivera and J. A. Plascak, Phys. Rev. B 51 (1995)

9329.
[10] C Domb and M. S. Green, 1976. Phase Transitions and Critical Phenomena, ed. por C. Domb e M. S. Green,

(Academic, London)
[11] K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics. An Introduction, 3rd ed.

(Springer, Berlin, 1997).
[12] H. G. Ballesteros, et al, Phys. Rev. B 58 (1998) 2740.

International Conference on Defects in Insulating Materials IOP Publishing
Journal of Physics: Conference Series 249 (2010) 012038 doi:10.1088/1742-6596/249/1/012038

6




