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Abstract. A single-wall carbon nanotube (SWCNT) can be visualized as a graphene rolled into a cylinder.
Tight-binding band structure calculations, with hopping between nearest-neighbor 7 orbitals only (NNTB),
established rules by which both the mode in which the graphene is rolled up and the diameter determine
whether the SWCNT is a metal or a semiconductor. However, when the diameter of the SWCNT is
ultra-small its large curvature results in the breakage of these rules. In this work, we studied zigzag (n,
0) SWCNTs with diameters smaller than 0.7 nm using a m orbital-only tight-binding model including
anisotropy in the hopping between next-nearest-neighbor sites (ANNNTB). Band overlaps were found in
the electronic band structures of the zigzag SWCNTs for n = 3, 4, 5, and 6, indicating that they are
metals. The reason why the band structures of armchair and chiral SWCNTs are less affected by curvature
effects becomes clear with the ANNNTB model, as does the reason why non-degenerate states cause band
overlaps of the zigzag SWCNTSs for n = 3, 4, 5, and 6. Our results show that a 7 orbital-only tight-binding
model is able to describe both the band overlaps and gaps obtained by ab initio calculations for zigzag

SWCNTs.

1 Introduction

Since the discovery of carbon nanotubes (CNT) by lijima
in 1991 [1], much effort has been employed towards the
production of CNTs with ultra-small diameters. In 1992,
Ajayan and Ijima reported the obtainment of a CNT with
a diameter of 0.7 nm [2]. This remained the record for eight
years, until Sun et al. reported the creation of a CNT with
a diameter of 0.5 nm [3]. In that same year, fabrications
of CNTs with diameters of 0.4 nm and 0.33 nm were re-
ported [4-6]. In 2004, a CNT with an incredible diameter
of 0.28 nm was reported by Zhao et al. [7], who consid-
ered the diameter to be the distance between two dark
lines associated with nanotube walls in conventional high-
resolution transmission electron microscopy (HR-TEM)
images. Recently, Guan et al. contested the reliability
of the values of the calculated diameters and reported
the smallest CNT as being 0.4 nm in diameter [8]. This
measure was calculated using a modern HR-TEM with a
post-specimen aberration corrector.

Single-wall carbon nanotubes (SWCNT) can be visual-
ized as a graphite sheet (graphene) rolled into a cylinder.
The SWCNTs are characterized by two integer numbers
(n,m) that determine the modes as the graphene is rolled
up. Zigzag SWCNTs are characterized by indices (n,0).
Tight-binding band structure calculations with hopping
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between nearest-neighbor 7 orbitals only (NNTB) showed
that both the mode in which the graphene is rolled up
and the diameter (d) determine the type of conductor a
SWCNT is [9]. If 2n +m = 3p (p is an integer number)
then the SWCNT is a metal, otherwise it is a semicon-
ductor [10,11]. This is the so called 1/3 rule. Further, the
band gaps of SWCNT semiconductors are proportional to
the inverse of their diameters [12], the so-called 1/d rule.
However, when the diameter of the SWCNT is ultra-small,
its large curvature results in the breakage of these rules.

Calculations using density-functional theory (DFT)
with different approximations showed that the band gap
of the semiconductor (7, 0) zigzag SWCNT is strongly re-
duced in relation to that obtained by NNTB, making its
band gap smaller than that of the (8, 0) SWCNT. This
consequently breaks the 1/d rule [13-15]. The calculations
also determined that (4, 0) and (5, 0) zigzag SWCNTs are
metals, which violates the 1/3 rule [14-24]. Nevertheless, it
was found that the electronic band structures of armchair
and chiral SWCNTs are less affected by large curvatures
than those of zigzag SWCNTs [18,19,21,25]; however, the
reason for this is still an open question.

Blase et al. attribute these discrepancies between the
ab initio and NNTB results to the strong hybridization
induced by the large curvature of these SWCNTs. The
antibonding 7* and ¢* states mix and repel each other,
resulting in a lowering of energy of (originally) purely 7*
states [13]. They also reported that the band responsible
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for band overlap of the (6, 0) SWCNT, and for the reduc-
tion of the band gaps of the (7, 0) and (8, 0) SWCNTs, is
non-degenerate, but they do not explain why.

Tight-binding electronic band structure calculations
with curvature effects included were realized. Hamada,
Sawada and Oshiyama used the 2s and 2p orbitals of a car-
bon atom as the basis set for expressing the tight-binding
model (HSO model) [11], i.e., they considered 7 and o or-
bitals. Nevertheless, they found a narrow-gap in the (6,
0) SWCNT, which is not in agreement with the DFT re-
sults that indicates that this nanotube is a metal [13—
15,19-21]. Recently, Miyake and Saito [20], using the HSO
model, calculated the band gaps of zigzag SWCNTs with
d < 1.5 nm and showed that the band gaps of semicon-
ductor zigzag SWCNTSs with diameters greater than that
of the (6, 0) SWCNT agree with the 1/d rule; however,
when the band gaps of semiconductor zigzag SWCNTSs are
calculated with DFT using local-density approximation
(LDA) this agreement only occurs for the SWCNTs with
diameters greater than that of the (8, 0) SWCNT. Beyond
this, Miyake and Saito calculated the band gap for the (5,
0) SWCNT as being ~0.06 eV using the HSO model, and
with LDA they found a band overlap of 1.2 eV [20].

Blase et al. made tight-binding calculations with hop-
ping between nearest-neighbor and next-nearest-neighbor
7 orbitals for zigzag SWCNTs with n = 6, 7, 8, and 9 [13].
They found band gaps close to those obtained by Hamada
et al. [11] except for that of the (6, 0) SWCNT, which pre-
sented a band gap of 0.05 eV, whereas Hamada et al. ob-
tained a band gap of ~0.2 eV. Yorikawa and Muramatsu
theoretically studied the curvature effect on the band gaps
of semiconductor SWCNTs using a tight-binding model
that takes into account a mixing effect between 7 and o
orbitals [26]. They obtained an approximate expression of
the band gap for SWCNTs. They found that the band
gap of the (8, 0) SWCNT is larger than that of the (7,
0) SWCNT, which agrees with results obtained by Blase
et al.

These results suggested the hypothesis that the 7 or-
bital alone is not sufficient to describe the electronic band
structures of SWCNTs with ultra-small diameters. How-
ever, we show in this work that a 7 orbital in a tight-
binding model is able to obtain the values for the band
gaps and overlaps yielded by ab initio calculations of
zigzag SWCNTs with ultra-small diameters if we consider
these effects as being a consequence of an increase in the
electronic transfer among next-nearest-neighbor 7 orbitals
to the length of the circumferential direction. This model
allows for a natural explanation of why the band struc-
tures of armchair and chiral nanotubes with ultra-small
diameters are less affected by large curvatures. It can also
explain why non-degenerate bands are so important for
zigzag SWCNTSs with ultra-small diameters.

The remainder of this paper is organized as follows: in
Section 2 we introduce the 7 orbital in the tight-binding
model used to describe the band structures of SWCNTs
with ultra-small diameters; in Section 3, we present the
results and discuss them; Section 4 is dedicated to our
conclusions.
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Fig. 1. (a) Schematic representation of the origin of the
anisotropy due to the large curvature of the tube of a zigzag
SWCNT with an ultra-small diameter. The electronic trans-
fer energy between nearest-neighbor and next-nearest-neighbor
sites are t and t', respectively. (b) Honeycomb lattice with
anisotropic next-nearest-neighbor hopping. A unit cell of the
(3,0) SWCNT is in gray and a unit cell of the two-dimensional
lattice is inside the gray rectangle in white.

2 Anisotropic tight-binding model

In graphene, the 7 orbitals are perpendicular to the plane
formed by carbon atoms and parallel to one another.
Thus, when graphene is rolled up to form a nanotube,
the 7w orbitals point out along the longitudinal axis of the
nanotube. Therefore, the distance between the 7 orbitals
along the circumferential direction is decreased. We con-
sider that in zigzag nanotubes with ultra-small diameters
the large curvature allows for a significant increase in the
electronic transfer between the next-nearest-neighbor
orbitals located along the circumferential direction (see
Fig. 1la). Thus, the simpler 7 orbital in a tight-binding
model that describes zigzag SWCNTs with ultra-small
diameters must consider, beyond the hopping between
nearest-neighbor sites (¢), the hopping between the two
next-nearest-neighbor sites located along direction a with
the same y coordinate (t') (see Fig. 1b), i.e., it must in-
clude anisotropic hopping between next-nearest-neighbor
sites. The 7 orbitals are considered here to be perpendic-
ular to the nanotube surface. In armchair and chiral nan-
otubes the next-nearest-neighbor 7 orbitals overlap less
than on zigzag nanotubes because of the different rollup
vectors of these nanotubes; hence, the increase in the elec-
tronic transfer between these orbitals in armchair and chi-
ral nanotubes is smaller than in zigzag nanotubes. This
explains why the band structures of armchair and chiral
nanotubes are less affected by the curvature than the band
structures of zigzag nanotubes.

The tight-binding energy dispersion relation of a zigzag
SWCNT [E(,,p] is obtained from the dispersion rela-
tion of the honeycomb lattice with the periodic bound-
ary condition na - k = 2mq (¢ = 1,.2,...,2n) in the
circumferential direction and L(—a + 2b) - k = 271m
(m = —L/2,—-L/2+ 1,...,L/2 — 1) in the longitudi-
nal direction of the zigzag SWCNT, where a = ax and
b = (1/2)ax + (3'/%/2)ay are honeycomb lattice unit vec-
tors (see Fig. 1b) and L is the number of unit cells of
the SWCNT [9]. The dispersion relation [E(k)], in the
Slater-Koster scheme, of the honeycomb lattice including
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hopping between next-nearest neighbours in the direction
a (as described in Fig. 1b) is given by the secular equation

Haa(k) — E(k)

Te® e
Hpa(k) ’

Hpp(k) — E(k)
where
1 —ik(RA-R'y)
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By using the equivalence of the A and B carbon atoms
one has Hgp = Haa; and Hpa is obtained by means of
the Hermitian conjugation relation Hps = H 5. In this
approximation the other terms with |[R4 — R’ 4| = a and
terms with |[R4 — R’ 4| > 2a in equation (2), and terms
with |Ra — Rp| > a/3'/? in equation (3) are neglected
(R and R’ 4 are the position vectors of atoms A and Rp
is the position vector of atom B (Fig. 1b)). The orbital
energy of the 2p level, €2, and the transfer integrals, ¢
and t/, are given by

e2p = (pa(r — Ra)[ H[pa(r — Ra)), (4)

t'=(pa(r — Ra)| H|pa(r — (Ra +a))) (5)
and
t =(pa(r — Ra) [H|gp(r — (Ra+ a/V3y)))
= <(PA(T — RA) |H| (pB(’r‘ — (RA + a/2x
+a/(2V3)y))), (6)

where H is the Hamiltonian of the solid, and ¢4 (¢p)
denote the 2p, atomic wave function centered on the
A (B) atom. Hence, taking €2, = 0, the solution to equa-
tion (1) is

E“(k) = 2t' cos (kya)

3k k k
+ at 1+4cos<\/2ya> cos( ;a)—l-élcosQ( ;a),

(7)
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Table 1. Structures, band gaps and overlaps, and electronic
energy transfer, ¢, calculated with ¢ = —2.5 eV of zigzag
SWCNTs with ultra-small diameters. All band gaps are di-
rect at the I' point (k, = 0). For the metallic case, all the
band overlaps have a maximum at the I point and are given
as negative gaps.

Band gap
obtained by Band gap
SWCNT  LDA-DFT t obtained by
+ GW (eV) ANNNTB
corrections (eV)
(eV)

(3,0) —1.323 —1.467
(4, 0) —1.290 —0.160
(5, 0) —-1.0° —1.233 —1.004
(6, 0) —0.8% —1.100 —0.800
(7, 0) 0.6* —0.865 0.599
(8, 0) 1.1° —0.370 1.099

)

“ From reference [15]. ” Calculated from references [24,25].

where o = +1. In this manner,
o 2qm
En0) = E (ky) = |t] | =27 cos "
3k
+a 1+4cos<\/ ya> cos(qﬂ) + 4 cos? (qﬂ) . (8)
2 n n
with

ka:a = 2»,?‘];
2
kya = \/;er,

(¢g=1,2,...,2n)
(m*fL 7L+1 L*]_) (9)
=—9,"5 yeees o .

We use t = —2.5 eV, t' = vt and L = 1000. We note
that values a little below or above L = 1000 yield results
very near to those calculated with this value and thus our
results shall be near to those of a nanotube with infinite
length.

The value of ¢’ depends on the diameter of the
SWCNT. It was obtained by making the value of the band
gap (overlap), which is obtained from the electronic band
structure calculated from equation (8), equal to that cal-
culated ab initio. As LDA tends to underestimate the band
gap of semiconductors [13,20], Miyake and Saito included
many-body effects between electrons using GW approxi-
mation (GWA) [20]. They calculated the band gap of the
(7, 0) SWCNT and the band overlaps of the (5, 0) and (6,
0) SWCNTSs (see Tab. 1).

Sparatu et al. calculated the band gap of the (8, 0)
SWCNT using the GW corrections to LDA and found
a value of 1.75 eV, which is much larger than the value
of 0.60 eV found only with LDA [27,28]. Nevertheless,
the lowest optical transition energy obtained with GWA
is not in agreement with experimental data, but when
the electron-hole (e-h) interaction is included, the lowest
optical transition energy of the (8, 0) SWCNT becomes
1.55 eV and agrees well with the available experimental
data [27,28]. Hence, the value of the band gap decreases
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Fig. 2. Electron transfer energy of the anisotropic hopping be-
tween next-nearest-neighbor 7 orbitals (') relative to ¢ versus
the n chiral index. The black squares are points obtained from
ab nitio fitting results. The full line is obtained by the function
t'/t = 0.54095 — 0.00154/(1 + 0.00025n)~'/0-00936 \With this
function we found the value of ¢'/t for n = 3 and 4.

to a maximum value of 1.55 eV. Assuming that the band
gap calculated with the e-h interaction decreases relative
to the band gap calculated with GWA only at the same
proportion as the lowest optical transition energy, then
the band gap of the (8, 0) SWCNT becomes 1.1 eV.

Sparatu et al. showed that the e-h interaction only
slightly alters the lowest optical transition energy of the
(5,0) SWCNT relative to the energy calculated with GWA
only and that both energies are in very good quantitative
agreement with experiments [27,28]. Thus, we expected
that the band overlaps of the (5, 0) SWCNT calculated
with the GW approximation and including the e-h inter-
action are close to one another. As the e-h interactions are
mainly important for semiconducting SWCNTs [27,28], we
expected the band overlap of the (6, 0) SWCNT to be near
the overlap calculated by Miyake and Saito using GWA
only [20]. The (7,0) SWCNT is a semiconductor, although
the lowest optical transition energy calculated with GWA
only (1.2 eV) is very close to the value of 1.289 eV pre-
dicted by empirical formulas [29]. Thus, we expected the
band gap of the (7, 0) SWCNT calculated with GWA only
to be close to the real value as well.

Therefore, the band gaps (overlaps) used to obtain the
t' parameters of the (5, 0), (6, 0), and (7, 0) SWCNTs
are those calculated with the GW approximation reported
in reference [20], while the ¢’ parameter of the (8, 0)
SWCNT was calculated from the results reported in ref-
erences [27,28]. All of the band gaps and overlaps cal-
culated by ANNNTB are equal to those calculated using
LDA-DFT including many-body effects between electrons,
as can be seen in Table 1.

Figure 2 shows the dependence of ¢/t on the chiral in-
dex n of the zigzag SWCNT. The amplitude of ¢’ decreases
with increasing n and, from a hyperbolic fit of v (full line
in Fig. 2), it cancels the anisotropy (¢ = 0) to the zigzag
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Fig. 3. (3, 0) zigzag SWCNT. Electronic band structure cal-
culated by (a) NNTB and (b) ANNNTB, and (c) density of
states calculated by ANNNTB. The dotted line denotes the
Fermi level Er. The dashed line above the Fermi level is the
conduction band, ¢ = n, while the dashed line below the Fermi
level is the energy band which become the higher occupied
valence band when the ANNNTB model is used.
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SWCNTs with n > 8. This decrease in ¢’ with increas-
ing diameters of the zigzag SWCNT (d = na/m) is physi-
cally consistent, i.e., when the diameter of the SWCN'T de-
creases, its curvature becomes larger, causing the distance
between the 7 orbitals located at the same plane perpen-
dicular to the longitudinal axis of the SWCNT (see Fig. 1)
to be smaller than that in a SWCNT of greater diameter,
and hence the hopping ¢ increases. The hyperbolic fit-
ting of the ab initio results gives us possible values for the
~ parameter for the (3, 0) and (4, 0) SWCNTs (Fig. 2).
These parameters were utilized to obtain the band over-
laps of the (3, 0) and (4, 0) SWCNTSs by means of the
band structures calculated by equation (8) (see Tab. 1).

3 Results and discussions

The NNTB (¢ = 0) and ANNNTB band structures of
(n,0) zigzag SWCNTs with n = 3, 4, 5, 6, 7, and 8
are shown in Figures 3-8, respectively, together with the
densities of states (p). The (4, 0) and (5, 0) SWCNTs,
which are predicted by the 1/3 rule to be semiconductors
(see Figs. 4a and 5a), present band overlaps (see Figs. 4b
and 5b) when the ANNNTB model is used. We found by
ANNNTB that the band gap of the (4, 0) SWCNT ob-
tained by NNTB vanishes for v > 0.500. The metallicity of
the (4, 0) and (5, 0) SWCNTSs has been reported in various
previous works based on ab initio calculations [14-24,28],
but it is believed that a 7 orbital-only tight-binding model
is not able to obtain these properties.

The band structures of the (3, 0) and (6, 0) SWCNTs
also present band overlaps that are not predicted by the
NNTB model (see Figs. 3a and 3b, and Figs. 6a and 6b).
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Fig. 5. (5, 0) zigzag SWCNT. Electronic band structure cal-
culated by (a) NNTB and (b) ANNNTB, and (c) density of
states calculated by ANNNTB. The dotted line denotes the
Fermi level Er. The dashed line above the Fermi level is the
conduction band, ¢ = n, while the dashed line below the Fermi
level is the energy band which become the higher occupied
valence band when the ANNNTB model is used.
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The existence of band overlapping in the band structure
of the (6, 0) SWNCT obtained by ANNNTB agrees with
the LDA-DFT calculations with [20] and without [13] GW
corrections, but we did not find electronic band struc-
ture calculations for the (3, 0) SWCNT in the literature
to make comparisons. Barone and Scuseria confirmed by
means of a systematic DFT study that the (3, 0) SWCNT
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Fig. 6. (6, 0) zigzag SWCNT. Electronic band structure cal-
culated by (a) NNTB and (b) ANNNTB, and (c) density of
states calculated by ANNNTB. The dotted line denotes the
Fermi level Er. The dashed line above the Fermi level is the
conduction band, ¢ = n, while the dashed line below the Fermi
level is the energy band which become the higher occupied
valence band when the ANNNTB model is used.
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Fig. 7. (7, 0) zigzag SWCNT. Electronic band structure cal-
culated by (a) NNTB and (b) ANNNTB, and (c) density of
states calculated by ANNNTB. The dotted line denotes the
Fermi level Er. The dashed line above the Fermi level is the
conduction band, ¢ = n, while the dashed line below the Fermi
level is the energy band which become the higher occupied
valence band when the ANNNTB model is used.

is a metal [23], but they did not present the band structure
and did not report the value of a possible band overlap.

The band structures determined by NNTB and
ANNNTB showed that both the (7, 0) SWCNT (see
Figs. 7a and 7b) and the (8, 0) SWCNT (see Figs. 8a
and 8b) are semiconductors, although the band gaps cal-
culated with ANNNTB are smaller than those calculated
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Fig. 8. (8, 0) zigzag SWCNT. Electronic band structure cal-
culated by (a) NNTB and (b) ANNNTB, and (c) density of
states calculated by ANNNTB. The dotted line denotes the
Fermi level Er. The dashed line above the Fermi level is the
conduction band, ¢ = n, while the dashed line below the Fermi
level is the energy band which become the higher occupied
valence band when the ANNNTB model is used.
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with NNTB. Thus, the band gaps of the (7, 0) and (8, 0)
SWCNT calculated with ANNNTB are in agreement with
the 1/3 rule, but break the 1/d rule because the band gap
of the (8, 0) SWCNT is larger than that of the band gap
of the (7, 0) SWCNT. These results agree with the various
results obtained by ab initio calculations [13-15].

The metallic or semiconductor characteristics of
the SWCNTSs obtained by band structures using the
ANNNTB model can be found from the densities of states
shown in Figures 3c—8c. The densities of states were cal-
culated by the expression:

1 1
E)=-1 ; 10
2 mﬂNC;aZ;E—Eg(ky)—i—ié (10)

Y

where N denotes the number of carbon atoms of the
SWCNT, and § is an appropriate broadening factor, as
usual [26]. Our tests revealed that 0.005|¢| is an adequate
value for §. The Fermi level of the semiconductor SWCNT's
was placed in the middle of the band gap.

We found a large van Hove peak for the (4, 0) SWCNT
just below the Fermi level (see Fig. 4c¢), which is in excel-
lent agreement with ab initio results [21,24]. The densi-
ties of states of the (3, 0), (4, 0), and (5, 0) SWCNTs
(see Figs. 3c-5c, respectively) present a gap in the valence
band that was not found by either NNTB (indicated by
band structures shown in Figures 4a—6a) or DFT calcula-
tions [17,19,21,24,28]. This result clearly reveals that the
hopping anisotropic between next-nearest-neighbor sites
increases the distance between the valence bands. The
densities of states at the Fermi level of the (5, 0) and
(6, 0) SWCNTs calculated with the LDA-DFT are equal
to 0.35 states/eV per atom [17] and 0.07 states/eV per
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atom [13], respectively, while we obtained 0.20 states/eV
per atom and 0.04 states/eV per atom, respectively, by
ANNNTRB calculations.

The band structures calculated with the ANNNTB
model reveal that the maximum band overlaps of the
metallic (3, 0), (4, 0), (5, 0), and (6, 0) SWCNTSs occur at
the I" point and the band gaps of the semiconductor (7, 0)
and (8, 0) SWCNTSs are direct and also at the I" point (see
Figs. 3b-8b). These results agree with both LDA [13,16-
20] and GWA [20,27,28] calculations applied to the (5, 0),
(6, 0), (7, 0), and (8, 0) SWCNTs.

The band overlaps of the zigzag SWCNTs with n = 3,
4, 5, and 6 predicted by the ANNNTB model occur be-
cause the non-degenerate conduction band with quantum
number ¢ = n is lower in energy and a doubly degenerate
valence band is higher in energy (dashed lines in Figs. 3b—
6b) relative to their respective positions in the band struc-
tures calculated by NNTB (dashed lines in Figs. 3a—6a).

The reason why the ¢ = n conduction band is lower
in energy is because the term of the anisotropy in equa-
tion (8) (term multiplied by «) has the minimum value at
this point, and this occurs because in the lattice utilized to
generate the zigzag SWCNTs studied here (see Fig. 1b),
the distance along the direction of the chiral vector be-
tween next-nearest-neighbor sites is twice the distance be-
tween nearest-neighbor sites.

This downshift of the non-degenerate conduction band
was first found by Blase et al. while studying the (6, 0)
SWCNT via LDA-DFT calculations [13], and it was in-
terpreted as being due to a strong m*-c* hybridization.
However, they did not explain why the conduction band,
which causes the band overlap of the (6, 0) SWCNT, is
non-degenerate. Blase et al. also reported that the same
non-degenerate band is responsible for the reduction of the
band gaps of the (7, 0) and (8, 0) SWCNTSs below those
calculated by the NNTB model [13]. However, we found
by ANNNTB calculations, that the ¢ = n non-degenerate
conduction band is only responsible for the reduction of
the band gap of the (7, 0) SWCNT (see Figs. 7b and 8b).
The band gap of the (8, 0) SWCNT calculated by the
ANNNTB model is smaller than that obtained by the
NNTB model due to the approximation of two doubly
degenerate bands.

Reich et al. showed that the NNTB model provides an
adequate description of the valence band of the (10, 0)
SWCNT when compared with that obtained by LDA [25],
although the NNTB model is not able to reproduce band
structure above the Fermi level. They verify that the dif-
ferences in energy between the conduction bands at the I’
point, which is the critical point from which the singular-
ities in the density of states originate, are vastly exagger-
ated by NNTB. However, our results for zigzag SWCNTs
with n = 3, 4, 5, 6, 7, and 8 obtained by ANNNTB
also present differences in energy between the conduc-
tion bands at the I' point smaller than that obtained by
NNTB, but the differences in energy between the valence
bands at the same point are higher than that obtained
by NNTB as can be verified by comparing Figures 3a— 8a
with Figures 3b—8b, respectively.
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4 Conclusions

We studied (n, 0) single-wall carbon nanotubes
(SWCNTSs) with chiral index n ranging from 3 to 8,
that is, zigzag SWCNTs with diameters smaller than
0.7 nm. The ultra-small diameters of these nanotubes
cause the breakage of the 1/3 and 1/d rules. The standard
explanation attributes this phenomenon to the strong
hybridization of the 7* and o™ states induced by the large
curvature of these SWCNTs. In this work we proposed a
7 orbital-only tight-binding model including anisotropy
in the hopping between next-nearest-neighbor sites
(ANNNTB). We showed that it is able to describe both
the band overlaps and gaps of zigzag ultra-small SWCNTs
obtained by ab initio calculations. The anisotropy causes
the approximation of the conduction bands and the sepa-
ration of the valence bands relative to the band structures
calculated by nearest-neighbor tight-binding (NNTB).
And thus this causes the band overlaps in the electronic
band structures of zigzag SWCNTSs with n = 3, 4, 5, and
6, indicating that they are metals, and also causes the
decrease of the band gaps of the semiconductors (7, 0)
and (8, 0) SWCNTs relative to those obtained from the
NNTB model. The ANNNTB model yielded a natural
explanation to the fact that armchair and chiral SWCNTs
are less affected by curvature than zigzag SWCNTs as
well as yielded a reason why non-degenerate states cause
band overlaps of zigzag SWCNTs with n = 3, 4, 5, and 6.

We would like to express our sincere thanks to M.E. de
Souza for valuable comments. This work was supported by the
CAPES and CNPq (Brazilian agencies).
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