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Thermal entanglement witness for interacting itinerant fermion systems
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The Hubbard model describes interacting itinerant fermion systems and is the simplest model capable of
describing the essential physics of strongly correlated electron systems. In this model, both spin correlations and
charge correlations are important for the entanglement, thus the magnetic susceptibility is not an appropriate
thermal entanglement witness. The specific heat reflects spin correlations and charge correlations. We obtain a
relation that permits the specific heat to be used directly as a thermal entanglement witness. We calculate, away
from half filling, the entanglement critical temperature TE , below which entanglement is detected, for small linear
clusters and the hypercubic lattice in the limit of infinite dimensions by using the exact numerical diagonalization
method and the dynamical mean-field theory, respectively. We find, in both cases, that TE increases with increasing
strength of the on-site Coulomb repulsion U .
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I. INTRODUCTION

The state of a system is said to be entangled whenever
it cannot be written as a product of states of subsystems
(separable or product states) [1–5]. The study of quantum en-
tanglement in macroscopic systems is important for three basic
reasons: to investigate the quantum-to-classical transition, to
determine whether entanglement indicates a phase transition,
and because the development of quantum computing depends
on the handling of entangled macroscopic systems [2]. It is
difficult to determine whether a state of many subsystems is
entangled and also to quantify this entanglement, particularly
if the state is mixed, such as states of systems at finite
temperatures. Thus it is extremely important to have a tool for
detecting the entanglement: the entanglement witness has this
function. The entanglement witness is an observable whose
expectation value exceeds a certain bound only if the state
under consideration is entangled [1,3].

Ghosh et al. showed that quantum entanglement is crucial
for describing the behavior of the experimental magnetic
susceptibility of the insulator magnetic salt LiHo0.045Y0.955F4

[6]. Calculations revealed that at low temperature the values
of the magnetic susceptibility, magnetization, internal energy,
and specific heat in some magnetic systems could only be
explained by assuming that the states of these systems are
entangled [6–12]. Consequently, these properties can be used
as thermal entanglement witnesses. In particular, Wiesniak
et al. showed that for an Ising ring in a transverse magnetic field
and a Heisenberg antiferromagnetic ring, under the assumption
that only separable states exist, the specific heat diverges
when the temperature approaches absolute zero [12]. Thus, for
systems described by these Hamiltonians, the validity of the
third law of thermodynamics relies on quantum entanglement.

Although several studies in the literature describe ther-
modynamic properties as thermal entanglement witnesses
for localized spin models, this scenario changes when the
Hamiltonian describes interacting itinerant particles in a solid.
Souza and Almeida presented an entanglement witness that
depends on both the magnetic susceptibility and the local
spin-spin correlation function [8]. This witness is adequate for
studying systems with variable local spin lengths and permits

the analysis of quantum entanglement in both conducting and
insulating materials. Nevertheless, the magnetic susceptibility
and the spin-spin correlation functions take into account only
the spin correlations of the system, but in interacting itinerant
electron systems, the charge correlations also play an important
role in the entanglement, as demonstrated by Zhu et al. [13].
Thus, when studying the entanglement in these systems, it is
more appropriate to use a witness that takes into account both
charge and spin correlations.

The simplest model capable of describing the essential
physics of strongly correlated electron systems is the Hubbard
model [14,15]. Here the word correlated refers to those con-
sequences of the particle-particle interaction that arise beyond
the mean-field approximation, while in the context of quantum
information theory, the expression quantum correlation is used
in a more general sense, indicating the presence of correlations
between different subsystems that exceed any correlation
allowed by classical physics [16]. Quantum entanglement is
one type of quantum correlation, but quantum correlations
can be present even in separable quantum states [17,18]. The
quantum discord is a good indicator of the quantum nature
of correlations in a bipartite system [19,20]; zero quantum
discord is a necessary condition for classical-only correlations.

In Sec. II we demonstrate a criterion that determines, by
measuring the specific heat, if the thermal state of a system
described by the Hubbard Hamiltonian is entangled, for the
case away from half filling and with a constant number of
particles. That is, we obtain a relation that uses the specific
heat directly as a thermal entanglement witness. This result
is important because the specific heat reflects both spin and
charge correlations, which makes it adequate for the study
of quantum entanglement in interacting itinerant electron
systems. In addition, measuring the specific heat of a solid
is a well-established experimental routine [12]. Note that the
relation between entanglement and specific heat is not new,
even for itinerant fermion systems. There are studies relating
fidelity and specific heat in the context of phase transition
[21,22]. In particular, You et al. introduced the concept of
fidelity susceptibility, which defines the response of the fidelity
to the driving parameter of the Hamiltonian, and studied
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the fidelity and fidelity susceptibility of the one-dimensional
Hubbard model at temperature zero [21]. They also showed
that the fidelity susceptibility driven by temperature is related
to the specific heat. Because fidelity is a measure of the
similarity between two states, it can be used to signal the
change of state of a system from an entangled thermal state
(state of the system at temperatures lower than the critical
temperature) to a separable thermal state (state of the system
at temperatures higher than the critical temperature) and thus
to determine the critical temperature. This indicates that the
specific heat (by means of the fidelity) could be regarded as an
entanglement witness for itinerant and localized systems.

Using the specific heat as witness, we analyze the thermal
entanglement for linear clusters and the hypercubic lattice in
the limit of infinite dimensions. The results and discussion are
presented in Sec. III. We summarize in Sec. IV.

II. THE HUBBARD MODEL AND THE SPECIFIC HEAT AS
AN ENTANGLEMENT WITNESS

The Hubbard Hamiltonian is given by [14]

H =
∑
i,j
i �=j

∑
σ

tij c
†
i,σ cj,σ + U

∑
i

n̂i,↑n̂i,↓, (1)

where tij is the hopping amplitude between sites i and j , U is
the on-site Coulomb interaction, c

†
i,σ (ci,σ ) is the fermionic

creation (annihilation) operator, which creates (destroys) a
particle on site i with spin projection σ =↑ (+1), ↓ (−1),
and n̂i,σ = c

†
i,σ ci,σ is the number operator. In this work the

first and second terms on the right-hand side of Eq. (1) will be
called Ht and HU , respectively.

For a system with Ns sites, considering each site as an
elementary subsystem, the fully separable states (Ns-partite
states) have the form [1]

|ψ〉 = ⊗NS

i=1|ψ〉i = |ψ〉1 ⊗ |ψ〉2 ⊗ · · · ⊗ |ψ〉NS
, (2)

with, in general,

|ψ〉i = ai
0|0〉i + ai

+1| ↑〉i + ai
−1| ↓〉i + ai

2|↑↓〉i
(∣∣ai

0

∣∣2

+ ∣∣ai
+1

∣∣2 + ∣∣ai
−1

∣∣2 + ∣∣ai
2

∣∣2 = 1
)
, (3)

where the label i = 1, 2, . . ., Ns refers to the lattice site. If there
is entanglement among elementary subsystems, then the state
of the system cannot have the form (2). If the state is bipartite
|ψ〉 = |ψ〉A ⊗ |ψ〉B [where A (B) denote a subsystem with
NSA

(NSB
) sites and NSA

+ NSB
= NS], then the subsystem

A (B) is entangled because if it is not entangled, then the
state is not only bipartite but multipartite. Thus, if the state

is bipartite, then |ψ〉A �= ⊗NSA

i=1 |ψ〉Ai
(Ai = 1, 2, . . ., or Ns)

and similarly |ψ〉B �= ⊗NSB

i=1 |ψ〉Bi
(Bi = 1, 2, . . ., or Ns and

the Bi’s are different from the Ai’s). Consequently, |ψ〉 �=
|ψ〉A1 ⊗ · · · ⊗ |ψ〉ANSA

⊗ |ψ〉B1 ⊗ · · · ⊗ |ψ〉BNSB
; therefore it

does not have the form of Eq. (2).

Theorem of the separability of eigenstates (SE theorem).
The only fully separable eigenstates of the Hamiltonian H

are |ψ〉 = ⊗NS

i=1|0〉i , |ψ〉 = ⊗NS

i=1| ↑〉i , |ψ〉 = ⊗NS

i=1| ↓〉i , and
|ψ〉 = ⊗NS

i=1| ↑↓〉i .
Proof. Suppose that |ψ〉 = ⊗NS

i=1|ψ〉i is an eigenstate of H ;
then it also must be an eigenstate of Ht , that is, Ht |ψ〉 =
�i �=j�σ tij c

†
i,σ cj,σ |ψ〉 = E0|ψ〉. The state |ψ〉 must be an

eigenstate of c
†
i,σ cj,σ for any i, j , and σ because these operators

act in different subspaces. Consider a specific set but arbitrary
{i, j , σ}; then |ψ〉, to be an eigenstate of c

†
i,σ cj,σ , requires that

both |ψ〉i be an eigenstate of c
†
i,σ and |ψ〉j be an eigenstate

of cj,σ . Thus |ψ〉i = |ψ(σ )〉i ≡ ai
σ |σ 〉i + ai

2| ↑↓〉i and |ψ〉j =
|ψ̃(σ )〉j ≡ a

j

0 |0〉j + a
j
−σ | − σ 〉j , and so c

†
i,σ |ψ(σ )〉i = 0 and

cj,σ |ψ̃(σ )〉j = 0, and consequently, c
†
i,σ cj,σ |ψ〉 = 0. Never-

theless, for this last equation to hold, it is sufficient that
only one of the two equations is valid: c

†
i,σ |ψ〉i = 0 or

cj,σ |ψ〉j = 0. The first possibility is |ψ〉i = |ψ(σ )〉i and
|ψ〉j given by Eq. (3). As |ψ〉 must be an eigenstate of
c
†
j,σ ci,σ and ci,σ |ψ(σ )〉i �= 0, one has that c

†
j,σ |ψ〉j = 0 ⇒

|ψ〉j = |ψ(σ )〉j , and as |ψ〉 also must be an eigenstate of
c
†
i,−σ cj,−σ , one has that c

†
i,−σ |ψ(σ )〉i = −σai

σ | ↑↓〉i = 0 or

cj,−σ |ψ(σ )〉j = −σa
j

2 |σ 〉j = 0. Hence |ψ〉 = ⊗NS

i=1|σ 〉i and
|ψ〉 = ⊗NS

i=1| ↑↓〉i are the eigenstates of Ht . As these separable
states are clearly also eigenstates of HU , they are eigenstates
of H . The second possibility is |ψ〉i given by Eq. (3) and
|ψ〉j = |ψ̃(σ )〉j . Utilizing a procedure analogous to the one
adopted for the first possibility, one finds that |ψ〉 = ⊗NS

i=1|0〉i
and |ψ〉 = ⊗NS

i=1| − σ 〉i are also eigenstates of H . Q.E.D.
When the system described by H is in thermal equi-

librium at a temperature T , its state is mixed and given,
with the canonical ensemble, by ρT = exp(−H/kBT )/Z,
where Z is the partition function. The specific heat is given
by C = 〈�2H 〉ρT

/NSkBT 2, where 〈(· · ·)〉ρT
≡ Tr{ρT (· · ·)}

and 〈�2H 〉ρT
= 〈H 2〉ρT

− 〈H 〉2
ρT

is the variance of H .
The thermal state ρT of an Ns-site system is fully
separable if ρT = �νpν |ψ〉(ν)(ν)〈ψ | = �νpν |ψ〉(ν)

1
(ν)
1 〈ψ | ⊗

|ψ〉(ν)
2

(ν)
2 〈ψ | ⊗ · · · ⊗ |ψ〉(ν)

NS

(ν)
NS

〈ψ |, where pν � 0 is the weight
of the fully separable pure state |ψ〉(ν) [Eq. (2)] in the
mixture, with �νpν = 1. Hofmann and Takeuchi have shown
that if the thermal state ρT is a mixture of separable
states, then 〈�2H 〉ρT

� 〈�2H 〉min, where 〈�2H 〉min is the
lowest value of the variance obtained over the pure states,
that is, 〈�2H 〉min = min{(ν)〈ψ |�2H |ψ〉(ν)} [23]. Therefore,
if C < 〈�2H 〉min/NSkBT 2, then the state of the system
described by H must contain entanglement. In this manner,
the entanglement critical temperature TE , where for T <

TE it is possible to guarantee that the system state is entan-
gled, is given by the equation T 2

EC(TE) = 〈�2H 〉min/NSkB ,
that is, TE is the temperature where C intersects with
〈�2H 〉min/NSkBT 2. Thus, to determine TE , it is necessary to
calculate 〈�2H 〉min.

Let us consider a system described by H with a fixed parti-
cle number N . Then, for the separable state (2), N = ∑

i 〈n̂i〉i ,
where n̂i ≡ n̂i,↑ + n̂i,↓ and 〈(· · ·)〉i ≡ i〈ψ |(· · ·)|ψ〉i . From
Eq. (3) one finds that 〈n̂i〉i = 0|ai

0|2 + 1|ai
+1|2 + 1|ai

−1|2 +
2|ai

2|2, which can assume values between 0 and 2. Let us
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analyze the separable state |ψ ′〉 for a two-site system:

|ψ ′〉 = (
a1

0 |0〉1 + a1
+1| ↑〉1 + a1

−1| ↓〉1 + a1
2 |↑↓〉1

) ⊗ (
a2

0 |0〉2 + a2
+1| ↑〉2 + a2

−1| ↓〉2 + a2
2 |↑↓〉2

)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1
0a

2
0 |0〉1 ⊗ |0〉2 if N = 0

a1
0 |0〉1 ⊗ (

a2
+1| ↑〉2 + a2

−1| ↓〉2
) + (

a1
+1| ↑〉1 + a1

−1| ↓〉1
) ⊗ a2

0 |0〉2 if N = 1(
a1

+1| ↑〉1 + a1
−1| ↓〉1

) ⊗ (
a2

+1| ↑〉2 + a2
−1| ↓〉2

) + a1
0a

2
2 |0〉1 ⊗ |↑↓〉2 + a1

2a
2
0 |↑↓〉1 ⊗ |0〉2, if N = 2

a1
2 |↑↓〉1 ⊗ (

a2
+1| ↑〉2 + a2

−1| ↓〉2
) + (

a1
+1| ↑〉1 + a1

−1| ↓〉1
) ⊗ a2

2 |↑↓〉2 if N = 3

a1
2a

2
2 |↑↓〉1 ⊗ |↑↓〉2 if N = 4,

(4)

where the constant a’s are nonzero. Defining |1〉i ≡ ai
+1|↑〉i + ai

−1| ↓〉i and |2〉i ≡ |↑↓〉i , which satisfies n̂i |1〉i = 1|1〉i and
n̂i |2〉i = 2|2〉i , one has

|ψ ′〉 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1
0a

2
0 |0〉1 ⊗ |0〉2 if N = 0

a1
0 |0〉1 ⊗ |1〉2 + a2

0 |1〉1 ⊗ |0〉2 if N = 1

|1〉1 ⊗ |1〉2 + a1
0a

2
2 |0〉1 ⊗ |2〉2 + a1

2a
2
0 |2〉1 ⊗ |0〉2 if N = 2

a1
2 |2〉1 ⊗ |1〉2 + a2

2 |1〉1 ⊗ |2〉2 if N = 3

a1
2a

2
2 |2〉1 ⊗ |2〉2 if N = 4.

(5)

This equation reveals that for N = 1, 2, and 3, |ψ ′〉 is
not a separable state. If we perform a local measure on a
site for determining its occupation, the result indicates the
particle number on the other site. In the case of N = 1 it
may seem counterintuitive that a single particle could have
nonlocal properties because the detection of the particle at one
location nullifies any possibility of simultaneous recording
of the particle at another location. However, the nonlocal
properties of a single particle are comprehended by means
of its wavelike properties [24]. This analysis shows that
when N is constant, |ψ〉i is an eigenstate of n̂i , that is,
〈n̂i〉i = ni = 0,1,or 2 (where ni is the particle number on site
i); otherwise Eq. (2) would produce entangled states. In the
general case with Ns sites, this result remains valid. If |ψ〉i is
not an eigenstate of n̂i , then from Eq. (2) |ψ〉 = |ψ〉A ⊗ |ψ〉i =
ai

0|ψ〉A ⊗ |0〉i + |ψ〉A ⊗ |1〉i + ai
2|ψ〉A ⊗ |2〉i and N = NA

+ ni (where |ψ〉A is the state of the system with the site i

out and NA is the particle number in the subsystem A), but as
N is fixed, a local measure on the site i for determining if ni is
0, 1, or 2 determines NA and thus |ψ〉 given by Eq. (2) contains
entanglement. Hence, for fixed N , any fully separable state of
an Ns-site system has the form given by Eq. (2), but with

|ψ〉i =

⎧⎪⎨
⎪⎩

|0〉i
ai

+1| ↑〉i + ai
−1| ↓〉i for

∣∣ai
+1

∣∣2 + ∣∣ai
−1

∣∣2 = 1

|↑↓〉i .
(6)

The separable states given by Eqs. (2) and (6) are eigenstates
of HU : HU |ψ〉 = UDψ |ψ〉, where Dψ = �ini,↑ni,↓ is the
number of doubly occupied sites in state |ψ〉, with ni,σ =
0 or 1 the particle number on site i with spin projection σ .
To obtain the mean value of Ht , we use the following result,
which is valid for Eq. (6):

〈c†i,σ 〉i = 〈ci,σ 〉i = 0. (7)

With these equations, one finds that 〈ψ |c†i,σ cj,σ |ψ〉 = 0 for
i �= j . Thus

〈ψ | Ht |ψ〉 =
∑
i,j
i �=j

∑
σ

tij 〈ψ | c†i,σ cj,σ |ψ〉 = 0. (8)

This result implies that 〈ψ |H |ψ〉 = UDψ . Therefore, the
lowest possible value EB of the energy (for U > 0) over fully
separable states of an Ns-sites system with a fixed particle
number is EB = 0 for 0 � N � NS and EB = (N − NS)U
for NS < N � 2NS .

The variance 〈�2H 〉 with respect to an arbitrary fixed-N
fully separable state is given by

〈�2H 〉 = 〈ψ |H 2
t |ψ〉 + 〈ψ |HtHU |ψ〉 + 〈ψ |HUHt |ψ〉

+ 〈ψ |H 2
U |ψ〉 − (〈ψ |Ht |ψ〉 + 〈ψ |HU |ψ〉)2

= 〈ψ |H 2
t |ψ〉, (9)

where Eq. (8), the equality 〈ψ |H 2
U |ψ〉 = 〈ψ |HU |ψ〉2, and the

equation 〈ψ |HtHU |ψ〉 = (〈ψ |HUHt |ψ)† = 0 were used. On
account of Eq. (7), Eq. (9) becomes

〈�2H 〉 =
∑
i,j
i �=j

∑
p,q
p �=q

∑
σ,ξ

tij tpq〈ψ |c†i,σ cj,σ c
†
p,ξ cq,ξ |ψ〉

=
∑
i,j
i �=j

∑
p,q
p �=q

∑
σ,ξ

tij tpq[δi,j δp,q + (1 − δi,j )δi,qδj,pδσ,ξ ]

×〈ψ |c†i,σ cj,σ c
†
p,ξ cq,ξ |ψ〉

=
∑
i,j
i �=j

∑
σ

tij tj i〈ψ |n̂i,σ (1 − n̂j,σ )|ψ〉, (10)

where δi,j is the Kronecker delta. Writing �σ n̂i,σ n̂j,σ =
1/2(n̂i n̂j + 4ŜZ

i ŜZ
j ), where ŜZ

i = 1/2(n̂i,↑ − n̂i,↓) is the Z

component of the spin operator on site i, and assuming that
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the lattice is isotropic, that is, tij = tj i , one has

〈�2H 〉 =
∑
i,j
i �=j

(tij )2

[
〈n̂i〉i − 1

2

(〈n̂i〉i〈n̂j 〉j + 4
〈
ŜZ

i

〉
i

〈
ŜZ

j

〉
j

)]
.

(11)

This equation shows that the variance of H with respect
to any fully separable state [Eq. (2)] depends on 〈n̂i〉〈n̂j 〉
and 〈ŜZ

i 〉〈ŜZ
j 〉, which is generally different from 〈n̂i n̂j 〉 and

〈ŜZ
i ŜZ

j 〉. Therefore, we conclude that both charge and spin
correlations are important for the entanglement in the Hubbard
model (this result has already been obtained by Zhu et al. using
another approach [13]). Thus the specific heat is more suitable
for studying the entanglement in this model than the magnetic
susceptibility, which is given by the variance of the spin.

Considering that the lattice is homogenous and the hopping
occurs only between nearest-neighbor sites, that is, tij = −t if
i and j refer to nearest-neighbor sites and tij = 0 otherwise,
Eq. (11) becomes

〈�2H 〉 = t2Nz − 1

2
t2

∑
〈i,j 〉

(
ninj + 4

〈
ŜZ

i

〉
i

〈
ŜZ

j

〉
j

)
, (12)

where �〈i,j〉 refers to a sum over nearest-neighbor sites and
z is the coordination number of the lattice. Thus 〈�2H 〉min is
obtained when �〈i,j〉(ninj + 4〈ŜZ

i 〉〈ŜZ
j 〉j ) is maximum. This

maximization occurs for the states |ψ〉min = ⊗NS

i=1|ni↑,ni↓〉i
with both saturated magnetization and particles occupying
each other’s nearest-neighbor sites, that is, states where the
hopping is minimum (the SE theorem asserts that the only fully
separable eigenstates are those where hopping does not occur).
For these states, 〈�2H 〉 = 0 at N = 0, Ns , or 2Ns , which
is consistent with the SE theorem, thus it is not possible to
obtain information about the entanglement of the system when
n ≡ N/Ns = 1 by using the specific heat as an entanglement
witness. Therefore, we must study systems away from half
filling, that is, n �= 1. From Eq. (10) one finds that an Ns-site
system with a fixed particle number is entangled if

C/kB <
min

{
t2

NS

∑
〈i,j 〉

∑
σ ni,σ (1 − nj,σ )

}
(kBT )2

, (13)

where the specific heat must be calculated over the canonical
ensemble and �〈i,j〉�σni,σ (1 − nj,σ ) is calculated over the
separable states |ψ〉 = ⊗NS

i=1|ni↑,ni↓〉i .

III. THERMAL ENTANGLEMENT IN LINEAR CLUSTERS
AND IN THE HYPERCUBIC LATTICE

For n < 1 the state of saturated magnetization is given,
for example, by ni = ni,↑. Thus min{�〈i,j〉ni,↑(1 − nj,↑)} is
obtained for states where the allowed hopping number is at
its minimum. Hence, assuming periodic boundary conditions,
|ψ〉min = ⊗NS

i=1|ni↑〉i with the unoccupied (occupied) sites
being nearest-neighbor sites of each other for 0.5 � n < 1
(0 < n < 0.5) (see Fig. 1). Analyzing Fig. 1, one finds that for
a d-dimensional hypercubic lattice with 0.5 � n < 1 (0 < n <

0.5), the minimal value of �〈i,j〉ni,↑(1 − nj,↑) is greater than
or equal to ( d

√
NX)d−12d, where NX = Nh (NX = N ) denotes

the number of unoccupied (occupied) sites and Nh = NS − N

FIG. 1. State that minimizes the variance 〈�2H 〉 for (a) a linear
lattice and (b) a square lattice, using periodic boundary conditions, at
0.5 < n < 1. For these states 〈�2H 〉min = min{t2�〈i,j 〉ni,↑(1 − nj,↑)}.
The quantity �〈i,j 〉ni,↑(1 − nj,↑) is equal to the allowed hopping
number and is minimal for the states shown in (a) and (b). In (a) only
two hops are allowed and in (b) nearest-neighbor hopping is allowed
only to the gray sites. For a d-dimensional hypercubic lattice with 0.5
< n < 1 the minimal hopping number between nearest-neighbor sites,
and consequently 〈�2H 〉min, is greater than or equal to ( d

√
NX)d−12d ,

where NX is the number of unoccupied sites.

is the number of holes. Thus, for a density of particles n < 1,
the state of the system described by the Hubbard Hamiltonian
on a d-dimensional hypercubic lattice with nearest-neighbor
hopping is entangled if

C/kB <
(nX)1−1/d

(kBT )2

t22d

(NS)1/d
, (14)

where nX ≡ NX/NS . Note that in the thermodynamic limit
(NS → ∞ with fixed nX) Eq. (14) becomes C < 0, which
apparently makes its use of limited value. Nevertheless, the
value of NS is actually of the order of Avogadro’s number
NA and Eq. (14) can be used to analyze the entanglement in
real systems. For example, setting t ≈ 1 eV and nX ≈ 1, for
a three-dimensional system with NS ≈ NA, Eq. (14) becomes
C (J/mol K) < 79.5/T 2 [in Eq. (14) the value of C is given per
site]. Besides, for the Hubbard Hamiltonian on a hypercubic
lattice in the limit of infinite dimensions, the right-hand side
of Eq. (14) is finite even in the thermodynamic limit because
the nearest-neighbor hopping t must be scaled as t = t∗/

√
2d

(t∗ is a constant) to keep the kinetic energy per site finite [25].
We studied rings with six and four sites by using the

exact numerical diagonalization method (see Fig. 2) and the
hypercubic lattice in the limit of infinite dimensions by using
the dynamical mean-field theory (DMFT) in the paramagnetic
phase (see Fig. 3). In this limit the noninteracting (U = 0)
density of states of the hypercubic lattice acquires a Gaussian
form [25]. The DMFT reduces the problem of the dynamics
of interacting electrons on a lattice to a single-site problem
(described by the Anderson impurity model, for example)
with effective parameters being self-consistently determined
and becomes exact in the limit of infinite dimensions [26].
We solved the equations of the DMFT by using an algorithm
based on the exact numerical diagonalization of the Anderson
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FIG. 2. Specific heat C of the Hubbard model on rings with (a) NS = 6 and (b) NS = 4 as a function of the temperature T for N = NS − 1
and several values of U . The line with small squares is our entanglement witness; from Eq. (14) it is given by (2/NS)/(kBT /t)2. The entanglement
critical temperature TE is the temperature at which the specific-heat curve intersects the line with small squares. For temperatures lower than
TE , the state of the system is entangled.

impurity model with a finite number of sites (in this work
we use six sites) presented by Caffarel and Krauth [27]. The
numerical program that we used is based on the one indicated
in Ref. [26].

It is interesting to observe that as the strength of the
Coulomb interaction increases, the entanglement critical tem-
perature increases as well (see Figs. 2–4). This behavior
of TE as a function of U is analogous to the behavior
of TE as a function of the magnetic field for a transverse
antiferromagnetic Ising chain reported by Wiesniak et al.
also by using the specific heat as an entanglement witness
[12]. Nevertheless, our results, calculated away from half

filling, are qualitatively different from those obtained by
Souza and Almeida and Zhu et al. at half filling. Using a
thermal entanglement witness that takes into account only spin
correlations, Souza and Almeida found that for the Hubbard
model on rings with four and six sites, TE ∝ U−1 in the
regime U � t [8]; Zhu et al. studied the entanglement in the
Hubbard model on a ring of four sites using the negativity and
found that the various pairwise entanglements are generally
suppressed by the on-site repulsion U [13]. This difference can
be understood as follows. At half filling, when U increases,
the spin correlations increase, the charge correlations decrease
(〈n̂i n̂j 〉 → 1 = 〈n̂i〉〈n̂j 〉 and 〈ŜZ

i ŜZ
j 〉 → ±1/4 �= 〈ŜZ

i 〉〈ŜZ
j 〉 =

FIG. 3. Specific heat C of the Hubbard model on a hypercubic lattice in the limit of infinite dimensions as a function of the temperature
T , in the thermodynamic limit, with (a) n = 0.95 and (b) n = 0.75, for several values of U . The dashed line is our entanglement witness;
from Eq. (14) it is given by (1 − n)/(kBT /t∗)2. The entanglement critical temperature TE is the temperature at which the specific-heat curve
intersects the dashed line. For temperatures lower than TE , the state of the system is entangled.
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FIG. 4. Entanglement critical temperature TE versus on-site
Coulomb interaction U for a ring with four sites and a hypercubic
lattice in the limit of infinite dimensions, with n = 0.75. In the region
below the line, the state of the corresponding system is entangled.
The points U/t � 6 are well fitted by a linear curve with angular
coefficient ∼= 0.09 in both cases. For the hypercubic lattice in d → ∞,
the parameter t in the scale must be changed to t∗.

0), and, in general, the charge correlations are weakened
more quickly than the spin correlations are enhanced, so the
entanglement is suppressed by U and is mainly determined
by spin correlations at large U [13]. However, away from
half filling, the hopping exists even with U → ∞. Therefore,
〈n̂i n̂j 〉 − 〈n̂i〉〈n̂j 〉 decreases to a nonzero value as U increases
toward infinity and the charge correlations are weakened more
slowly than the spin correlations are enhanced. Consequently,
the entanglement is enlarged by the on-site Coulomb repulsion

and is determined by both spin correlations and charge
correlations.

IV. CONCLUSION

We presented a thermal entanglement witness that ana-
lyzes interacting itinerant electron systems described by the
Hubbard model. Our witness is based on the specific heat,
a thermodynamic property whose measurement is a well-
established experimental technique in solid-state physics and
that reflects both spin and charge correlations; consequently,
our witness can be used to investigate the entanglement in
magnetic or nonmagnetic materials as well as conducting or
insulating materials.

For a fixed particle number, we found that the lowest
possible value of the specific heat over fully separable states
of the nearest-neighbor Hubbard model is given by α/T 2,
where the constant α depends on the geometry and dimension
of the lattice and on the site and electron number of the system.
At half filling the constant α is zero. This occurs because at
n = 1 there are fully separable states that are eigenstates
of the Hubbard Hamiltonian, while for 0 < n < 1 and
1 < n < 2, all the eigenstates of this Hamiltonian are not Ns

partite. The constant α also is zero in the thermodynamic limit
for lattices with finite dimensions. We calculated, away from
half filling, the entanglement critical temperature TE below
which entanglement is detected for small linear clusters and
for the hypercubic lattice in the limit of infinite dimensions.
We found that TE increases with increasing strength of the
on-site Coulomb repulsion U .
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