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Existence of a tricritical point in the antiferromagnet KFe3(OH)6(SO4)2 on a kagome lattice
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We study the phase diagram in the H -T plane of the potassium jarosite compound KFe3(OH)6(SO4)2 for
the antiferromagnetic XY model with Dzyaloshinskii-Moriya (DM) interaction using the mean-field theory for
different values of DM. In our approach, we obtain the tricritical point in the H -T plane and the adjustment has
a strong correlation with experimental data.
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Recent experimental studies of the compounds
KFe3(OH)6(SO4)2 and AgFe3(OH)6(SO4)2, have indentified
the existence of a tricritical point (TCP) at temperatures of
around T = 50 K [1,2]. Such systems have been researched
as a prototype of the antiferromagnet on a kagome lattice
using the Heisenberg model [1,3–9]. The behavior of this
transition has been investigated by analysis of the M-H phase
diagram and TCP has also been obtained in the H -T plane
for the K-jarosite system [1]. Different theoretical approaches
have been made to such compounds but none has been able to
detect the existence of TCP.

In K-jarosites, above a certain critical value of the field
perpendicular to the kagome plane, Hc, a phenomenon known
as spin canting emerges [10], in which the spins are tilted
at small angles on their axis rather than being coparallel.
This phenomenon causes some antiferromagnetic materials to
exhibit a nonzero magnetic moment at temperatures above
absolute zero. Therefore resulting, for these systems, in a
transition from an antiferromagnetic state to a long-range
order ferromagnetic (LRO) state by spin canting in the
kagome lattice [1,2]. Such a transition happens to relatively
large fields (H � 10T ); however, the presence of tricritical
behavior has not been observed in the literature [11,12].
In particular, the studies of Fujita et al. [3,4] and Elhajal
et al. [13], and references therein, suggest an interaction of
type Dzyaloshinskii-Moriya (DM) which has encouraged the
theoretical study of this work.

Here, adopting the antiferromagnetic XY model with DM
interaction in the presence of a magnetic field for K-jarosite
compounds and following the same ideas of Lee et al. [14],
the Hamiltonian considered is given by

H = J
∑

〈i,j〉
�si · �sj −

∑

〈i,j〉
�Dij · (�si × �sj ) −

∑

i

�H · �si . (1)

The sum 〈i,j 〉 is restricted to the nearest neighbors, �Dij =
D�z is the DM interaction, �H is the magnetic field, and the spins
�si = (cos θi, sin θi) are unitary classical vectors confined in the
kagome lattice. So, the reduced Hamiltonian can be written as

βH = K
∑

〈i,j〉
cos (θi − θj ) − D0

∑

〈i,j〉
sin (θi − θj )

−h
∑

i

cos θi, (2)

where K ≡ J/kBT , D0 ≡ D/kBT , h ≡ μBH/kBT , μB is the
Bohr magneton, and kB is the Boltzmann constant. On the other
hand, the free energy per spin is given as

ψ(aα,φα) = q

2n
K

n∑

α=1

n∑

β=1,β �=α

R(aα)R(aβ) cos (φα − φβ)

− q

2n
D0

n∑

α=1

n∑

β=1,β �=α

R(aα)R(aβ) sin (φα − φβ)

− h

n

n∑

α=1

R(aα) cos φα

+ 1

n

n∑

α=1

{aαR(aα) − ln [2πI0(aα)]}, (3)

where n is the number of sublattices for the antiferromagnetic
structure (for kagome lattice, z = 4 and n = 3; see Ref. [14]
for more details), q ≡ z/(n − 1), z is the coordination number,
R(aκ ) = I1(aκ )/I0(aκ ) (with κ = α,β), and Iν(x) is the mod-
ified Bessel function of the first kind of integer order ν. The
parameters aκ and φκ are, respectively, the magnitude and the
angle of the local mean field on site κ [14], and are obtained
for the solution of the coupled equations:

Kq

n∑

β=1,β �=α

R(aβ) cos φβ + D0q

n∑

β=1,β �=α

R(aβ) sin φβ + aα cos φα = h,

(4)

Kq

n∑

β=1,β �=α

R(aβ) sin φβ − D0q

n∑

β=1,β �=α

R(aβ) cos φβ + aα sin φα = 0.
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FIG. 1. (Color online) Phase diagram for the compound potas-
sium jarosite. Solid lines represent second-order transition, while
dotted lines represent first-order transition. Open circles and solid
circles are the experimental data from Refs. [1] and [2], respectively.
TCP is obtained by solving numerically Eqs. (6) and H0 = 16.8T

[1].

Through minimizing the free energy, Eq. (3), with respect
to aκ and φκ we get a line of second-order transition able
to build the phase diagram in the H -T plane, as shown in
Fig. 1. The first-order line is obtained by equating the equations
for the free energy of antiferro- and ferromagnetic phases
[with φ′

κs = 0, aκ = a0, and K < 0 in Eq. (2)]. With these
data, we observe a strong correlation with the experimental
data, particularly in the second-order transition region except
for 58 K < T < 65.4 K (TN ≈ 65 K for potassium jarosites
[2,15]), where a marked reentrance appears possibly by the
mean-field approximation adopted in the present work. In a
recent paper, Matan and collaborators [1] obtained hysteresis
behavior in the H -T plane, with H = H0 = 16.8T when T

goes to zero. This behavior identifies first-order line transition
with a change to second-order line transition in the vicinity
of T ≈ 50 K. This characterizes the existence of TCP. In our
approach, we expand the equation for the free energy in terms
of the absolute value of the magnetization per site, �M , given by

ψ = ψ0 + A(T ,h,aα,φα)| �M|2
+B(T ,h,aα,φα)| �M|4 + · · · , (5)
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FIG. 2. Phase diagram in the H -T plane for kagome lattice:
(a) D/kB = 0.8 K, (b) D/kB = 0.5 K, and (c) D/kB = 0.1 K.
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FIG. 3. Diagram H -T for the square lattice, with D/J = 0.2.
Solid lines represent continuous transition from the determined phase
(helical phase) to a paramagnetic phase and the dotted line represents
the transition of the first order. The field H is given in units of
exchange interaction, J .

where �M can be decomposed in two components, Mx and My ,
proportional to R(aα) cos φα and R(aα) sin φα , respectively,
and aα,φα are solutions of Eqs. (4). The TCP is obtained by
numerically solving the coupled equations [16]

A(T ,h,aα,φα) = 1 and B(T ,h,aα,φα) = 0. (6)

By solving Eqs. (6), with J/kB = 42 K and D/kB = 1 K
(see Ref. [4] for comparison), we get (TTCP,HTCP) =
(47.3 K,12.9T ). These values are quantitatively very good
when compared with data experimentally obtained, i.e.,
(TTCP,HTCP) ≈ (50 K,13.4T ) [1,2]. Although, by using
different values of DM interaction for kagome lattice, we
get the TCP even for small values of D/kB (Fig. 2). In the
absence of such interaction, the phase diagram is qualitatively
the same as shown in Fig. 2 obtained at Ref. [14].

It is interesting to note that this configuration is identical
to the diagram obtained for the square lattice, as shown
in the Fig. 3, despite the kagome (in its antiferromagnetic
configuration) tripartite lattice. Contrastingly the square lattice
is bipartite and shows no transition from helical-nonhelicoidal,
as presented by the kagome and triangular lattices even with
D = 0. This transition occurs only on lattices with nonzero
helicity [13], such as the kagome lattice, an example of which
can be seen in Figs. 4(a) and 4(b), and the values obtained for
TCP are shown in Table I for different D/kB . As D goes to
zero, the curve of continuous transition extends to the whole
range of T in accordance with Ref. [14]. Likewise, for D = 0
(or very small D, as shown in Fig. 5), a transition from the

TABLE I. TCPs obtained for some values of interaction DM in a
kagome lattice, shown in the graph of Fig. 2.

D/kB (K) TCP (T ,H )

1 (47.3 K, 12.9 T)
0.8 (42.3 K, 9.4 T)
0.5 (29.9 K, 7.2 T)
0.1 (13 K, 4.7 T)
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(a) Helicoidal configuration
(helical) known as q = 0.

(b) No-helicoidal
configuration(nonhelical).

FIG. 4. Spin configurations in triangular and kagome tripartite
lattices.

helical phase to another nonhelical phase arises, as discussed
in Ref. [14], and higher values of D lead to higher values of the
ordering temperature to the zero field. In particular, for kagome
lattices, small values of DM interaction imply a breaking of
degeneracy of the system so that there is no transition from the
helical type to nonhelical for any D.

The phase diagram in the H -T plane was obtained for
the square lattice using the same procedure adopted for
the kagome/jarosite lattice, with z = 4 and n = 2. For
relatively high values of D there is no qualitative difference
between the phase diagrams in the H -T plane of kagome
and square lattices and this, we suppose, is due to the fact
that both have the same coordination number, an important
factor in mean-field approximation. In the absence of DM
interaction, the phase diagram shows a continuous transition
line that separates a determined phase from an undetermined
phase without the degeneracy presented by the triangular
lattice phase diagram, and TCP obtained for D/J = 0.2 is
(kBT /J,H ) = (1.31,8.21), with H in units of J . Similarly the
phase diagram for the triangular lattice is shown in Fig. 5 and
we can notice the existence of the first- and second-order lines
separated by a TCP located at (kBT /J,H ) = (1.1,3.9), even
to a very small value of D.
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FIG. 5. Diagram H -T for triangular lattice, with D/J = 0.08.
The solid line represents the continuous transition from the deter-
mined phase (helical phase) to the paramagnetic phase; the trajectory
line represents the helical-nonhelical transition [14] and the dotted
line represents the transition of the first order. The field of H is given
in exchange interaction units, J .

In summary, this study investigates the existence of TCP in
the phase diagram in the H -T plane by using the antiferromag-
netic XY model in the presence of an external magnetic field
and DM interaction, and a strong correlation exists between
the theoretical results and the experimental data. The presence
of the phenomenon of reentrance is considered in the light of
the mean-field approximation adopted for cluster with one spin
and it has been obtained in many other works known in the
literature with some magnetic anisotropy (see, for example,
Ref. [17], and references therein). As is well known, within
such kind of mean-field framework, the strict criticality of the
system is lost, and the real dimensionality of the system is
only partially incorporated through the coordination number
of the lattice. However, for tridimensional lattices, to which we
devoted our calculations, we believe that the present results are,
to a certain extent, of qualitative and quantitative relevance.
However, it shows that this mean-field approach leads to the
conclusion that the tricritical point at which the phase transition
changes from second to first order may exist in the system
under consideration, and the use of clusters with a greater
number of spins can significantly improve this theoretical fit.
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