

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE CAMPUS SÃO CRISTÓVÃO CURSO SUPERIOR DE TECNOLOGIA EM AGROECOLOGIA

ATRIBUTOS FÍSICOS, QUÍMICOS E MICROBIOLÓGICOS DO SOLO EM SISTEMA AGROECOLÓGICO DE PRODUÇÃO

FRANZONE DE JESUS FARIAS

SÃO CRISTÓVÃO-SE 2018

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE - CAMPUS SÃO CRISTÓVÃO

FRANZONE DE JESUS FARIAS

ATRIBUTOS FÍSICOS, QUÍMICOS E MICROBIOLÓGICOS DO SOLO EM SISTEMA AGROECOLÓGICO DE PRODUÇÃO

Trabalho de Conclusão de Curso apresentado ao Curso Superior de Tecnologia em Agroecologia do Instituto Federal de Educação, Ciência e Tecnologia de Sergipe - Campus São Cristóvão, como pré-requisito para a obtenção do título de Tecnólogo em Agroecologia.

Orientadora: Prof.^a Dra. Liamara Perin Co-orientadora: Prof.^a Dra. Sarita S. C. Pinheiro

SÃO CRISTÓVÃO-SE 2018

IFS - Biblioteca do Campus São Cristóvão

Farias, Franzone de Jesus

F224a Atributos físicos, químicos e microbiológicos do solo em sistema agroecológico de produção .- / Franzone de Jesus Farias. — São Cristóvão, 2018.

39 f.; il.

Monografia (Graduação) Tecnologia em Agroecologia. Instituto Federal de Educação, Ciência e Tecnologia de Sergipe - IFS, 2018.

Orientadora: Prof^a. Dra. Liamara Perin.

1. Qualidade do solo 2. Manejo do solo. 3. Semiárido. I. Instituto Federal de Educação, Ciência e Tecnologia de Sergipe IFS. II. Título.

CDU 631.4

FRANZONE DE JESUS FARIAS

ATRIBUTOS FÍSICOS, QUÍMICOS E MICROBIOLÓGICOS DO SOLO EM SISTEMA AGROECOLÓGICO DE PRODUÇÃO

Trabalho de Conclusão de Curso apresentado ao Curso Superior de Tecnologia em Agroecologia do Instituto Federal de Educação, Ciência e Tecnologia de Sergipe - Campus São Cristóvão, como pré-requisito para a obtenção do título de Tecnólogo em Agroecologia.

Aprovado em	n/
	BANCA EXAMINADORA
-	Dra. Liamara Perin – Orientadora
-	Dra. Sarita S. C. Pinheiro - Co-orientadora
-	Dra. Heloísa Thaís R. de Souza – Examinador Externo
-	MSc Márcio Trindade Almeida – Examinador Interno

Instituto Federal de Educação, Ciência e Tecnologia de Sergipe - IFS

AGRADECIMENTOS

Primeiramente a Deus, por sempre me mostrar que existe a possibilidade de um amanhã melhor mesmo quando o mundo parece que está caindo sobre cima de mim. A minha mãe Josefa (Finha), por sempre estar presente mesmo que do seu jeito duro e com suas poucas palavras. Aprendi que essa é sua forma de dizer que me ama. As minhas irmãs, Vanecleia (In memoriam), ou simplesmente Cléia, como a chamava, saudades eternas de você e a quem busco à vontade para sempre continuar. Sei que se ainda estivesse entre nós, estaria compartilhando comigo essa vitória. E, Verlane por me ajudar e motivar sempre nos meus estudos, mesmo distante e com falta de

Aos meus tios, João Pinto que me apresentou a área agrária quando iniciei o curso Técnico em Agropecuária e Antônio José em que sempre pude contar nos momentos de sufoco.

diálogo em alguns momentos, esteve sempre presente. Muito obrigado.

Aos meus amigos e colegas de curso, principalmente aos que se tornaram pessoas especiais para mim, Meyline, Beriba, Thaiane, Caroline, Carlos Eufrásio, Erick, Elis, Denisson, Izabel, Joyce, Cleise e Mauricélia. Pelo grande incentivo e por tornarem rotina da sala de aula em momentos animados e descontraídos.

A todos os professores que colaboraram para a minha formação acadêmica, principalmente aqueles que de alguma forma marcaram: Anselmo Pinheiro, José Dantas, Marco Arlindo, Sarita Campos, Gleise Passos, Carmen Lúcia, Cícera Izabel, Hunaldo Oliveira, Clewilson Soares, Cristiane Montalvão, Valeria Mendonca e Eldevio Gomes...

A minha também professora e orientadora Liamara Perin, no que se refere a relação professor-aluno aprendi a admirar muito, tanto como pessoa como pela profissional super engajado que é. O meu muito obrigado pelo apoio na elaboração deste trabalho. A equipe do Laboratório de Solos, Vanessa Miranda que mesmo com seu jeito sério sempre foi atenciosa e prestativa e Breno Freitas por sempre estar disponível para todos os momentos de socorro. Meus sinceros agradecimentos por todos os dias de aprendizado, alegria e grande satisfação por estar com vocês.

A Mayara e Edilson por permitir a realização deste trabalho na sua propriedade.

Ao Campus São Cristóvão do IFS pela oportunidade da formação profissional e ao CNpq pela bolsa concedida.

Finalmente, agradeço a todos que de forma direta ou indireta contribuíram na conquista deste sonho. Todos os nomes citados tiveram uma significativa colaboração na realização deste. Mais uma vez, meu muito obrigado a todos.

RESUMO

A mudança no uso do solo de uma condição natural para o uso agrícola pode impor mudanças em seus atributos de qualidade, trazendo consequências econômicas para o produtor e ambientalmente para sua região de abrangência. O objetivo deste trabalho foi avaliar a qualidade física, química e microbiológica de um solo em sistema agroecológico de produção no município de Simão Dias, região semiárida do Estado de Sergipe. Sendo assim, foram estudadas duas áreas sob manejo agroecológico, usando área de mata nativa como referência. Foram coletadas amostras indeformadas para as análises físicas de umidade e densidade do solo e amostras deformadas para as análises químicas e microbiológicas. Observou-se que o manejo empregado nas áreas agrícolas provocou o aumento da densidade, assim como a presença de cobertura vegetal que contribuiu para aumentar o teor da umidade nas áreas cultivadas. Os solos são de boa fertilidade, necessitando apenas aumentar os teores de matéria orgânica e menor revolvimento para não afetar a população microbiana do solo.

Palavra Chave: Qualidade do solo. Manejo do solo. Semiárido.

ABSTRACT

The change does not use the soil of a natural condition for agricultural use can import into its quality attributes, bringing economic consequences to the producer and the means to its region of comprehensiveness. The objective of this work is to evaluate the physical, chemical and microbiological quality of a soil according to the agroecological production system in the municipality of Simão Dias, semi-arid region of the State of Sergipe. Thus, two areas were studied for agroecological management, using forest area as reference. In this way, undisturbed samples were collected for the physical analyzes of soil moisture and density and deformed samples for the chemical and microbiological analyzes. Therefore, the management used in the agricultural areas caused the density increase, as a presence of vegetative contributory coverage to increase the content of one unit in the cultivated areas. Therefore, the soils are of good fertility, requiring only higher levels of phosphorus and increase the organic matter content of the soil.

Keywords: Soil quality. Soil management. Semiarid;

LISTA DE ILUSTRAÇÕES/FIGURAS

•				mostrando			-						
Figura	2:	Área	de	fragmento	de	mata	(A)	е	ponto	de	cole	ta	(B).
_				ira do toma									
				área da cultu									
•				amostras co cultura maçã							` ,		
Figura 6	: Titu	ılação –	- Res	spiração Micr	obiar	ıa							23
Figura 7	: Titu	ılacão -	- Res	spiração Micr	obiar	na							24

LISTA DE TABELAS

Tabela 1: Atributos físicos de qualidade do solo avaliados em sistema agroecológico
de produção no município de Simão Dias-Sergipe
Tabela 2: Atributos químicos de qualidade do solo avaliados em sistema
agroecológico de produção no município de Simão Dias-Sergipe
Tabela 3: Níveis de fertilidade do solo avaliados em sistema agroecológico de
produção no município de Simão Dias-Sergipe
Tabela 4: Atributos microbiológicos de qualidade do solo avaliados em sistema
agroecológico de produção no município de Simão Dias-Sergipe 31

SUMÁRIO

1.	INTRODUÇÃO	.11
2.	OBJETIVO GERAL	.12
	2.1 Objetivos Específicos	.12
3.	REVISÃO BIBLIOGRÁFICA	.13
	3.1 Atributos do solo como indicadores de sua qualidade	.14
	3.2 Atributos físicos de qualidade do solo	.15
	3.3 Atributos químicos de qualidade do solo	. 17
	3.4 Atributos microbiológicos de qualidade do solo	. 17
4.	METODOLOGIA	.20
5.	RESULTADOS E DISCUSSÃO	.25
6.	CONCLUSÃO	.32
7	REFERÊNCIAS BIBI IOGRÁFICAS	34

1- INTRODUÇÃO

A agroecologia busca além da valorização da biodiversidade e da preservação da natureza, o empoderamento de grupos vulneráveis, tanto na proteção do conhecimento tradicional, como na conscientização do modelo opressor e massificante do agronegócio. Tem se apresentado como uma nova ciência de base complexa e holística, que fornece princípios ecológicos básicos para o tratamento de ecossistemas, tanto no que se refere à produtividade agrícola com inclusão social e promoção da cidadania, quanto à preservação dos recursos naturais (ROCHA, 2007).

O solo é a base da produção agroecológica. Deve-se melhorar o solo, dar "vida ao solo" para desta forma ter boa produção. Portanto, a adoção de técnicas de manejo conservacionista do solo e da água são muito relevantes para a sustentabilidade, de tal forma que se possa manter ao longo do tempo esses recursos com quantidade e qualidade suficientes para a manutenção de níveis satisfatórios de produção.

Os solos, quando submetidos a determinados sistemas de cultivo, tendem a um novo estado de equilíbrio, refletido em diferentes manifestações de seus atributos, as quais podem ser desfavoráveis à conservação da capacidade produtiva dos mesmos. Logo, a relação entre o manejo e a qualidade dos solos pode ser avaliada pelos seus atributos físicos, químicos e microbiológicos.

Sendo assim, os atributos de qualidade do solo são úteis para avaliar o efeito do manejo e seus impactos na sustentabilidade dos agroecossistemas. Consequentemente, a sustentabilidade agrícola está diretamente ligada à qualidade do solo, na perspectiva de uma produção alimentícia tendo como base um solo capaz de cumprir suas funções em condições ambientais seguras e socialmente aceitas.

Buscando conhecer os atributos dos solos submetidos a manejo agroecológico, foi visitada uma propriedade agrícola no Município de Simão Dias-Sergipe, onde foram coletadas amostras de solo em áreas com diferentes usos e manejos: tomateiros, linhas e entrelinhas de macieiras, tendo área de mata como referência.

2 - OBJETIVO GERAL

Avaliar atributos de qualidade dos solos submetidos a diferentes usos agrícolas em sistema agroecológico de produção.

2. 1 - Objetivos Específicos

- Quantificar o teor de umidade e densidade dos solos sob os diferentes usos agrícolas;
- Avaliar a fertilidade dos solos sob os diferentes usos agrícolas;
- Quantificar a população microbiana e sua atividade nos solos sob os diferentes usos agrícolas;
- Comparar o efeito dos manejos agrícolas em relação à mata nativa.

3 - REVISÃO BIBLIOGRÁFICA

O município de Simão Dias, localizado na região Centro-Oeste Sergipana, faz parte da mesorregião do Agreste Sergipano e microrregião de Tobias Barreto. Apresenta população estimada em 40.838 habitantes e área territorial de 564,360 km² (IBGE, 2010). Em seu espaço territorial se encontra o bioma Caatinga Hiperxerófita e Hipoxerófila e clima semiárido, com precipitação que varia entre 700 a 900 mm anuais e predomínio de solos das ordens Planossolo e Cambissolo (EMBRAPA SOLOS, 1973).

O setor agropecuário se destaca como a principal atividade econômica do município, com predomínio para a cultura do milho, que ocupado 31.000 hectares com produtividade média de 5.280 kg/há (IBGE, 2015). A produção de milho no Brasil, conforme dados de 2016, cresceu 12,5%, entretanto, no Nordeste houve uma queda de 46,7% e em Sergipe, uma queda alarmante de 71,7% (ALESE, 2016). Esta queda na produtividade ocorreu devido a menor volume de chuvas neste ano.

A elevação da produtividade e do preço recebido pelo milho nos últimos anos, ocasionado principalmente pelo significado aumento da demanda por este produto no Nordeste, foram os principais fatores responsáveis pelo recente crescimento da produção de milho em Sergipe (PRATA, 2013). Áreas antes usadas para criação de gado foram substituídas pela monocultura do milho (SANTOS, 2012). O que se observa no campo é uma grande mudança no manejo desta cultura. Anteriormente os produtores utilizavam conhecimentos tradicionais para produção e agora seguem o pacote tecnológico da agricultura convencional, que inclui o monocultivo, a mecanização intensiva, o uso de agroquímicos e o uso de cultivares de alto desempenho e geneticamente modificados por técnicas de engenharia genética.

Os solos da região produtora de milho em Sergipe sofrem os maiores impactos ocasionados pelas práticas agrícolas dessa monocultura, pois a cada ano buscar-se-á expandir áreas além de intensificar o uso de tecnologias que possam garantir uma boa produtividade. Com essa nova realidade, torna-se um desafio buscar uma agricultura sustentável, diante dos impactos causados ao meio ambiente, pela implantação de uma monocultura (SANTOS, 2012). Portanto, prática da rotação de cultura torna-se um passo para garantir o desenvolvimento dessas atividades com sustentabilidade. Destaca-se também a adoção do sistema plantio direto, que irá

contribuir para melhor conservação do solo, evitando a erosão, além de atribuir à planta um melhor desenvolvimento vegetativo (FANCELLI; DOURADO NETO, 2004).

Diante da fragilidade do sistema exposto acima, se tornam urgentes alternativas mais sustentáveis de produção para o município. A agroecologia se apresenta como uma ciência que visa estabelecer bases teóricas para os diferentes movimentos de agricultura alternativa, sendo uma ótima opção para diversificação e menor degradação ambiental. Busca entender o funcionamento de agroecossistemas complexos e as diferentes interações presentes nestes, tendo como princípio a conservação e a ampliação da biodiversidade como base para o desenvolvimento sustentável. Esse sistema propõe alternativas que visam minimizar a artificialização do ambiente natural onde são desenvolvidas as atividades agrícolas, apresentando uma série de princípios e metodologias que buscam estudar, analisar, dirigir, desenhar e avaliar estes agroecossistemas (ASSIS; ROMEIRO, 2002).

Alternativas para diversificação da produção já estão sendo buscadas, a produção orgânica está crescendo no município e os produtores se organizando em cooperativas, buscando através da organização minimizar as dificuldades encontradas.

Sendo assim, os indicadores de qualidade do solo e da cultura, são úteis para avaliar o efeito do manejo e seus impactos na sustentabilidade dos agroecossistemas.

Consequentemente, a sustentabilidade agrícola está diretamente ligada à qualidade do solo, na perspectiva de uma produção alimentícia tendo como base um solo capaz de cumprir suas funções em condições ambientais seguras e socialmente aceitas. Deste modo, o manejo e uso do solo influenciam em suas propriedades físicas, químicas e biológicas. Da mesma maneira, estudos evidenciam que a maior diversidade biológica estabelece um equilíbrio do solo por um período de tempo maior, sendo importante objeto de estudo em avaliação de qualidade do ambiente e da sustentabilidade dos sistemas de produção (LAVELLE et al., 2006).

Portanto, pesquisas para conhecer os efeitos do manejo agroecológico sobre os atributos do solo são necessários para identificar as alterações destes atributos.

3. 1 - Atributos do solo como indicadores de sua qualidade

A qualidade do solo é tão importante quanto do ar e da água como fator determinante para a qualidade global do ambiente. Todavia, diferentemente do ar e

da água, para os quais existem padrões de qualidade, a definição e quantificação da qualidade do solo não é simples em decorrência da complexidade dos fatores envolvidos e de não ser o solo consumido diretamente pelo homem e animais (GOMES, 2010).

A conscientização de que o solo é um recurso fundamental para o funcionamento dos ecossistemas e a constatação de que os processos de degradação têm afetado uma porção considerável dos solos atualmente em uso estimulou o interesse pelo conhecimento da qualidade do solo para avaliação da sustentabilidade ambiental (ARAÚJO; MONTEIRO, 2007)

Segundo ISLAM; WEIL (2000), os indicadores podem ser divididos em três grandes grupos: (a) os efêmeros, cujas alterações ocorrem em curto espaço de tempo ou são modificados pelas práticas de cultivo, tais como: umidade do solo, densidade, pH, disponibilidade de nutrientes; (b) os permanentes, que são inerentes ao solo, tais como: profundidade, camadas restritivas, textura, mineralogia; (c) os intermediários, que demonstram crítica influência da capacidade do solo em desempenhar suas funções, como: agregação, biomassa microbiana, quociente respiratório e carbono orgânico total.

No monitoramento da qualidade do solo, diversos parâmetros químicos, físicos e biológicos têm sido considerados como indicadores de qualidade e mudanças do solo. A escolha do método e dos parâmetros depende dos objetivos, recursos disponíveis e condições do contexto local e da pesquisa além das características do solo analisado (CAMARGO, 2016).

Entendendo o solo como um corpo vivo acredita-se que a qualidade pode influenciar não só na fertilidade, mas também na biodiversidade de organismos vivos presentes nele. A interação entre os agentes químicos, físicos e biológicos regulam em grande parte as condições requeridas pela planta com relação à fertilidade do solo (PIMENTEL et al., 2006).

3.2 - Atributos físicos de qualidade do solo

A qualidade física de solos é um importante elemento de sustentabilidade, sendo uma área de estudo em contínua expansão (LAL, 2000; REYNOLDS et al., 2002), já que as propriedades físicas e os processos do solo estão envolvidos no

suporte ao crescimento radícula; armazenagem e suprimento de água e nutrientes, trocas gasosas e atividade biológica (ARSHAD et al., 1996).

Além disso, o sucesso ou fracasso de projetos agrícolas ou de engenharia muitas vezes são dependentes destes atributos e a ocorrência e crescimento de espécies vegetais estão diretamente relacionados a estas propriedades, assim como o movimento de água sobre e no interior do solo no deslocamento de seus nutrientes, poluentes químicos dissolvidos e partículas (FREITAS et al., 2013).

As principais propriedades físicas consideradas apropriadas para tal fim são: porosidade, distribuição do tamanho de poros, densidade do solo, resistência mecânica, condutividade hidráulica, distribuição de tamanhos de partículas e profundidade em que as raízes crescem (INGARAMO, 2003). Tais atributos têm sido utilizados para caracterizar as modificações físicas resultantes da compactação do solo, ocasionadas a partir da pressão exercida pelo rodado das máquinas agrícolas, pelo casco dos animais ou, ainda, pelos diferentes sistemas de preparo e manejo do solo (MOREIRA et al., 2012).

De acordo com BERNARDO et al., (2006) a umidade do solo influencia diretamente o volume de água nele armazenado, bem como a sua resistência e a compactação, entre outros fatores. Logo é de grande importância o conhecimento da umidade para estudos de movimento da água, bem como a adoção de determinadas práticas de manejo culturais e irrigação.

A densidade do solo refere-se à relação entre a massa seca e o volume total. É afetada pela cobertura vegetal, quantidade de resíduos à superfície, teor de matéria orgânica e uso e manejo do solo (SILVA et al., 2006). Além de ser um indicador da qualidade do solo, é utilizada para determinar a quantidade de água e de nutrientes que existam no perfil do solo com base no volume. Enquanto a porosidade, fração do volume ocupado com solução e ar do solo, é de grande importância aos processos físicos, químicos e biológicos, como infiltração, condutividade hidráulica, drenagem, retenção de água, difusão de nutrientes, crescimento de microrganismos, raízes e pelos absorventes (MOREIRA; SIQUEIRA, 2006).

Portanto os índices de qualidade física do solo são bastante utilizados principalmente quando se compara seus valores com valores de referência, determinados experimentalmente com base em parâmetros agronômicos, ou de áreas com solo sob vegetação natural (ARAÚJO et al., 2007 b). São os dois diferentes enfoques que têm sido propostos para se estabelecerem critérios de referência: o solo

de área sob vegetação natural, por representar as condições ecológicas de estabilidade do ambiente; e parâmetros agronômicos que maximizem a produção e conservem o meio ambiente (SANTANA; BAHIA FILHO, 2002).

3.3 - Atributos químicos de qualidade do solo

A utilização de características químicas do solo para avaliar as mudanças ocorridas em função dos seus diferentes tipos de uso, já vem sendo utilizada há vários anos por diversos autores, a fim de identificar qual a melhor maneira de utilização do solo, sem que ocorram maiores impactos na natureza. Assim, a exploração agrícola com o passar do tempo conduz ao aumento da heterogeneidade do solo por meio de modificações, como desmatamento, preparo da terra, alternância de culturas, uso de fertilizantes e incorporação de resíduos orgânicos fazendo com que uma mesma área com cultivo ou não em distintos sistemas de manejos apresente variação nos atributos químicos do solo (MILINDRO et al., 2016).

Os indicadores químicos retratam parâmetros que são responsáveis pelos processos naturais do funcionamento do solo, como a matéria orgânica (influencia a textura e a biomassa microbiana), o pH (a disponibilidade de nutrientes) e o conteúdo de nutrientes que está relacionado a produção de biomassa (PINTO, 2014). A matéria orgânica do solo (MOS) é um dos principais indicadores químicos, por ser altamente suscetível frente às práticas de manejo além de estabelecer relação com as demais propriedades do solo, tais como a densidade, a porosidade, a superfície específica, a estrutura e a retenção de água (REINERT et al., 2006).

Também a CTC (Capacidade de Troca de Cátions) é considerada outro importante indicador de qualidade do solo, pois está relacionada à capacidade do solo em reter e fornecer nutrientes às plantas, reduzindo as perdas destes por lixiviação, sendo está capacidade maior ou menor em função da quantidade de cargas negativas presentes na superfície dos coloides (BARRETO et al., 2008). E o índice de saturação de bases do solo é outro indicativo da condição geral da fertilidade do solo, pois representa a participação das bases trocáveis no complexo de troca.

3.4 - Atributos microbiológicos de qualidade do solo

Os atributos microbianos do solo, tais como a diversidade de microrganismos, atividade enzimática, taxa de respiração e biomassa microbiana, são indicadores

sensíveis que podem ser utilizados no monitoramento de alterações ambientais decorrentes do uso agrícola (EPELDE et al., 2014; FERREIRA et al., 2010; FERREIRA et al., 2011)

Para ALVES et al. (2011), na análise qualitativa dos solos, os indicadores biológicos como carbono da biomassa microbiana, respiração microbiana e quociente metabólico têm sido frequentemente sugeridos como mais sensíveis aos impactos causados pelo manejo, tendo em vista que esses sistemas influenciam constantemente a atividade metabólica dos microrganismos.

A biomassa microbiana do solo (BMS) é o componente vivo da matéria orgânica do solo. Sua avaliação é útil para obter informações rápidas sobre mudanças nas propriedades orgânicas do solo, detectar variações causadas por cultivos ou por devastação de florestas, medir a regeneração dos solos após a remoção da camada superficial e avaliar os efeitos de poluentes como metais pesados e pesticidas (FRIGHETTO, 2000).

Atualmente a BMS e seus processos bioquímicos são utilizados como indicadores de qualidade, devido a sua capacidade de responder rapidamente a alterações no ambiente do solo. Os conteúdos de carbono, nitrogênio e fósforo na biomassa microbiana e a atividade dos microrganismos são de grande importância para o entendimento dos fluxos de nutrientes em ecossistemas naturais, manejados e/ou com níveis de perturbação e um importante atributo no monitoramento de processos de recuperação ambiental e de áreas degradadas (ROSA et al., 2011).

A respiração basal do solo reflete a produção de CO₂ no solo resultante da atividade respiratória de microrganismos, protozoários, nematóides, insetos, anelídeos e raízes do solo. A respiração é um indicador sensível e revela rapidamente alterações nas condições ambientais que por ventura afetem a atividade microbiana (DE-POLLI; PIMENTEL, 2005).

Quociente Metabólico do Solo (qCO₂) é a razão entre a respiração basal do solo por unidade de carbono da biomassa microbiana, conforme descrito por (ARAÚJO et al. 2007 a). Altos valores do qCO₂ significam que a população microbiana está oxidando carbono das suas próprias células para sua manutenção, indicando que se encontra em condições adversas ou que o local recebeu incorporação de resíduos orgânicos (ALVES et al., 2011). A combinação das medidas da biomassa microbiana e respiração fornecem a quantidade de CO₂ evoluída por unidade de biomassa, denominada quociente metabólico ou respiratório (qCO₂). O qCO₂ indica a eficiência

da biomassa microbiana em utilizar o carbono disponível para biossíntese, sendo sensível indicador para estimar a atividade biológica e a qualidade do substrato (SAVIOZZI et al., 2002).

4 - METODOLOGIA

O presente trabalho foi desenvolvido na Fazenda Barrocas, localizada no Povoado Barrocas município de Simão Dias-Sergipe, definido pelas coordenadas 10°47'37.41 e 37°50'49.88, com altitude de 195 metros. O clima da região é tropical seco e sub úmido e a temperatura média anual é de 24,1° C, com precipitações pluviométricas médias anuais de 880 mm, concentradas nos meses de abril a agosto. A fazenda produz de forma agroecológica desde 2007, possui uma área de 30 hectares ocupada com mata nativa, pastagem, culturas anuais (feijão e milho), perenes (banana, maça, pera e café) e outras olerícolas.

A coleta foi realizada no dia 09 de janeiro de 2017 em quatro áreas com diferentes sistemas de manejo e uso do solo. Todas as áreas deste estudo apresentam solo do tipo Planossolo solódico eutrófico e são elas:

Figura 1: Fotografia aérea mostrando a localização das áreas de coleta. Foto: Google

Area de mata nativa: usada como referência para comparação de manejo em relação as demais áreas analisadas, um fragmento de formação caatinga hipoxerófila/floresta caducifólia (Figura 2), considerada formação secundária de caatinga que a aproximadamente 30 anos foi bastante devastada em função do uso com pecuária/pastagens e culturas anuais.

Cultura do tomate: no momento da coleta das amostras esta área estava recém capinada e as mudas de tomate haviam sido transplantadas a 15 dias. A

adubação foi feita com composto conforme recomendação e a área era irrigada por gotejamento. No momento da coleta o solo se encontrava descoberto e receberia capim como cobertura morta (Figura 3). Esta área vem sendo cultivada com diferentes culturas dentro do manejo agroecológico a 6 anos. Tamanho 30x50 m.

Cultura da maçã: foram coletadas amostras nas linhas e entrelinhas das macieiras com espaçamento de 3x1. Esta área com macieiras foi implantada a 7 anos, é adubada com composto e irrigação por gotejamento. As linhas receberam cobertura morta de capim e as entrelinhas eram cultivadas com diferentes olerícolas e adubadas com composto segundo recomendação (Figuras 4).

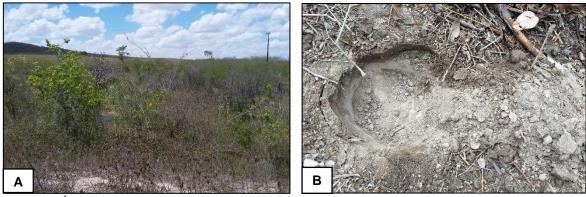


Figura 2: Área de fragmento de mata (A) ponto de coleta (B).

Figura 3: Área da cultura do tomate (A) coleta sendo realizada na área (B).

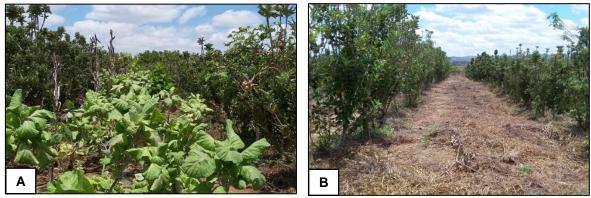


Figura 4: área da cultura maçã, linhas e entrelinhas.

Análises físicas

Dos atributos físicos foram avaliados teor de umidade atual e densidade do solo. Em cada área foram escolhidos aleatoriamente 9 pontos. Em cada ponto foi retirada uma amostra indeformada de solo utilizando anel metálico com 4 cm de diâmetro e 4 cm de altura. As amostras foram retiradas com anel metálico que foi introduzido no solo com o auxílio de uma enxada e o seu conteúdo acondicionado em latas de alumínio. As amostras foram levadas ao Laboratório de Solos, pesadas para obtenção do peso úmido e secas em estufa a 110° C por 24 horas. Após obtenção do peso seco foram realizados os cálculos para saber o teor de umidade do solo no momento da coleta e da densidade do solo (EMBRAPA, 1997).

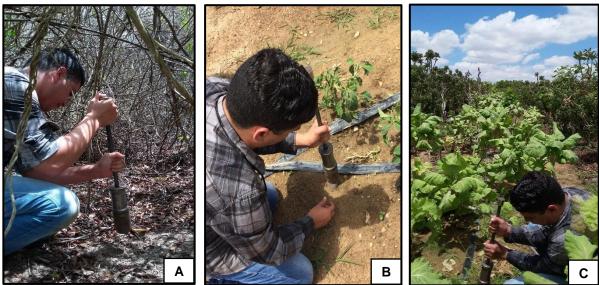


Figura 5: Retiradas das amostras com anel metálico na área mata nativa (A), área do tomateiro (B) e área da cultura maçã, linhas e entrelinhas .

Análises químicas

Foram determinados: o pH em água; CE (condutividade elétrica), cálcio mais magnésio (Ca²⁺ Mg²⁺), potássio (K⁺), sódio (Na⁺), alumínio (Al³⁺), hidrogênio (H⁺) fósforo assimilável (P) e carbono orgânico total, conforme metodologia da EMBRAPA, (1997). Em função dessas determinações, foi calculada a soma de bases (S), a capacidade de troca catiônica (CTC), a percentagem de saturação por base (V) e a percentagem de sódio trocável (PST). Em cada área foram coletadas 3 amostras compostas, cada amostra composta formada por 3 amostras simples, na profundidade de 0-20 cm.

Análises microbiológicas

Foram coletadas 3 amostras compostas como citado acima, porém na profundidade de até 10 cm de profundidade. As mesmas foram levadas ao laboratório e analisadas durante o período máximo de 10 dias.

No momento das análises, as amostras passaram por peneira com malha de 2 mm para retirada de pedras, raízes e outros restos vegetais. Todas as análises foram feitas em triplicata e o procedimento experimental foi complementado por prova em branco (controle da análise).

Os valores do carbono da biomassa microbiana do solo foram estimados pelo método fumigação-extração adaptado por SILVA e colaboradores (2007a). Esse método consiste na extração do Cmic em 20 g de amostra de solo fumigado, após adição de 1 mL de clorofórmio livre de etanol e amostras não fumigadas, sem a exposição ao clorofórmio. Após 24 horas de incubação no escuro, foi adicionado às amostras 50 mL de K₂SO₄ (0,5 M) e em seguida agitadas por 30 min a 120 rpm (rotações por minuto) e filtradas usando papel de filtro. Em um erlenmeyer de (125 mL) foram adicionados 8 mL do filtrado, 2 mL de K₂Cr₂O₇ (66,7 M), 10 mL de H₂SO₄ (P.A) e 5 mL de H₃PO₄ (P.A) e 10 mL de água destilada. As amostras foram tituladas com solução de sulfato ferroso amoniacal (Fe (NH₄)₂(SO₄).6H₂O) (33,33 M) em presença de difenilamina. E o teor de carbono da biomassa microbiana calculado segundo a metodologia.



Figura 6: Titulação - Respiração Microbiana

A respiração microbiana do solo (RBS) foi determinada de acordo com a metodologia adaptada por Silva e colaboradores (2007b), mediante a quantificação da evolução de CO₂ liberado em 20 g de amostra de solo, após 72 horas de incubação com solução de NaOH (0,05 mol L-¹), precipitado com 5 mL de BaCl₂ (0,5 mol L-¹) e titulado com solução de HCI (0,05 mol L-¹) na presença de fenolftaleína 0,1%. E a atividade dos microrganismos do solo foi calculada segundo a metodologia. A relação entre a respiração por unidade de carbono da biomassa microbiana do solo permite estimar o quociente metabólico do solo (qCO2), que estima a eficiência no uso de substratos pelos microrganismos, podendo ser utilizado como sensível indicador de estresse.

Figura 7: Titulação – Respiração Microbiana

Análise estatística

O tratamento dos dados consistiu da análise de variância e da comparação de médias pelo teste de Scott-Knott (1974) a 5% de probabilidade. Os dados foram submetidos análise do programa estatístico SISVAR (FERREIRA, 2000).

RESULTADOS E DISCUSSÃO

Atributos físicos

Na análise dos dados referentes ao teor de umidade atual e densidade dos solos nas áreas em estudo, foi observado que as áreas de mata e tomateiros diferiram estatisticamente das demais, apresentando menor teor de umidade no solo (Tabela 1).

A mata apresentou menor valor numérico de umidade do solo em relação as áreas cultivadas, devido aos baixos volumes de chuva no período da coleta, que ocorreu no mês de janeiro, em pleno verão seguido de um inverno com baixos volumes de chuvas. Estatisticamente igual à mata, a área com a cultura do tomate era irrigada no momento da coleta, porém estava ainda sem cobertura vegetal, aumentando a perda de água por evapotranspiração.

A área com macieiras apresentou maior teor de umidade tanto nas linhas como em suas entrelinhas, onde eram cultivas diferentes olerícolas. Esta área também recebia irrigação por gotejamento, porém suas linhas apresentavam cobertura morta e suas entrelinhas estavam com olerícolas de maior porte como couve e pimentão ou cobertura morta, cobrindo mais o solo. Em ambas as situações, cobertura morta e vegetação contribuíram para diminuição da perda de água por evaporação. Estudos já mostraram que a utilização da cobertura morta sobre o solo constitui-se numa prática vantajosa evitando além de perda de água, aquecimento do solo e controle de plantas espontâneas, como verificado no cultivo de cenouras (RESENDE et al., 2005). Estudos também apontaram que o porte das espécies vegetais e o espaçamento influenciam os parâmetros de evapotranspiração que afetam diretamente a umidade presente no solo (NOSETTO et al., 2005 e CAVALCANTE, 2011)

Em relação a densidade do solo, foi observado menor valor na área da mata, valores iguais para as áreas do tomateiro e nas linhas e entrelinhas de macieiras, porém todos apresentaram densidade inferior ao considerado crítico para densidade do solo (1,75 g/cm³).

No presente estudo, foi analisada a textura dos solos e as 3 áreas analisadas apresentaram solos de textura média, com teores de argila de 20% e areia pouco mais de 60%. Os valores de densidade do solo variaram de 1,12 a 1,38 g/cm³, valores considerados normais para solos de textura média. Estes resultados mostraram que o manejo empregado nas áreas de produção provocou pequeno aumento da

densidade do solo em relação a mata, porém os valores encontrados não restringem o desenvolvimento radicular das culturas, mas podem contribuir na redução do tamanho dos poros para fluxo de água e a condutividade hidráulica do solo em ambientes naturais.

Aumento de densidade do solo em áreas de uso agrícola em relação à mata em sistema convencional de produção de soja já foi observado no estado do Mato Grosso (RAMOS et al., 2013), e estão geralmente associados ao intenso revolvimento do solo, trafego de máquinas e diminuição dos teores de matéria orgânica.

Estudo da fertilidade de solo em áreas de produção de milho em Simão Dias, mostraram que as áreas sob manejo convencional e plantio direto apresentaram pequeno aumento na densidade do solo quando comparadas à mata (SILVA et al., 2015a). Resultados semelhantes também foram observados em sistemas agroecológicos de produção, tendo as áreas de produção também pequenos aumentos de densidade do solo (LOSS et al., 2009). Provavelmente este aumento da densidade do solo ocorreu porque em área de mata não houve revolvimento do solo e seu teor de matéria orgânica é maior.

Tabela 1: Atributos físicos de qualidade do solo avaliados em sistema agroecológico de produção no

município de Simão Dias-Sergipe.

Áreas	Teor de Umidade	Densidade do Solo
avaliadas	(%)	(g/cm3)
Mata nativa	9,34 b	1,12 b
Tomateiros	9,54 b	1,32 a
Linhas de macieiras	13,85 a	1,38 a
Entrelinhas de macieiras	13,78 a	1,34 a

Médias seguidas de mesmas letras não diferem entre si pelo Teste de Scott-Knott (1974) a 5% de probabilidade. Média formada por 3 repetições.

Atributos químicos

Todos os dados obtidos foram interpretados segundo SOBRAL e colaboradores (2017), e comparados em relação ao diagnóstico da fertilidade dos solos do Estado de Sergipe (SIQUEIRA, 2017). Em relação aos dados de fertilidade dos solos analisados (Tabela 2), foi observado que os pH das áreas analisadas não difeririu e que apenas a área da mata apresentou pH dentro da faixa considerada ideal para os solos (5,5 a 6,5), estando as áreas restantes com o pH acima do ideal. Em Sergipe,

as maiores frequências de pH acima do ideal estão na mesorregião do sertão, devido ao efeito do clima, para a região agreste ocorre predomínio de solo com pH dentro da faixa do ideal o produtor relatou que não fez calagem nas áreas estudadas, podendo o pH estar maior devido ao efeito da adubação.

Esta localidade está de transição entre Agreste e Semiárido e estes dados de pH acima do ideal nas áreas cultivadas nos indica que cuidados devem ser tomados com adubações, nesse ambiente mesmo sendo orgânico. O pH acima de 6,5 implica em problemas como a disponibilidade de micronutrientes e excesso de sais. O produtor relatou que não fez calagem nas áreas estudadas, podendo o pH estar maior devido ao efeito da adubação. Nenhuma das áreas necessitaram de calagem pois não apresentaram pH baixo e seu índice de Saturação de Bases (V%) é superior a 80%. Valores altos de saturação de bases predominam nesta região bem como no Sertão por serem áreas como menor lixiviação de cátions pela ação das chuvas.

A CE (Condutividade Elétrica) um indicativo da concentração de sais de um solo, apresentou valor de 3,6 mS/cm de solo na área da mata. Esse valor é considerado mediano, porém já interfere no desenvolvimento de culturas. As áreas cultivadas apresentaram valores baixos, menores que 2 mS/cm de solo, não interferindo no desenvolvimento das culturas. Provavelmente este alto valor na área da mata esteja relacionado aos baixos volumes de chuvas na região e aos pontos de coleta das amostras. Devido à dificuldade de caminhamento na caatinga, estas amostras foram coletadas em baixadas, locais que aumentam a concentração de sais.

Associado à CE, a PST (Percentagem de Sódio Trocável) apresentou valores baixos em todas áreas que também não diferiram estatisticamente. Os valores de CE, PST, e pH para as áreas avaliadas não caracterizaram estes solos como salinos, salinos-sódicos ou sódicos. Porém os valores de PST acima de 6% indicam que estes solos da ordem Planossolo, apresentam como subordem característica solódica (saturação por Na entre 6 a 15%), sendo portanto um Planossolo solódico eutrófico (V% maior que 50%).

Os teores de Al⁺³ trocável não diferenciam estatisticamente sendo considerados baixos variando entre 0, 1 a 0,15 cmol_o/dm³ de solo corroborando com os dados deste elemento no estado.

A acidez potencial, que se refere aos íons de H⁺ e Al⁺³ adsorvidas na superfície de troca, dado necessário para o cálculo da CTC do solo, diferiu estatisticamente para

área da mata, apresentando neste local maior valor (médio) em relação às demais (baixo).

Os teores de Ca+Mg foram considerados altos em todas áreas, tendo a área da mata os maiores valores em relação as áreas agrícolas. Para o estado, a literatura aponta predomínio de áreas com teores baixos e médios de Ca+Mg, sendo apenas 21% áreas com teores altos destes elementos.

A capacidade de troca de cátions (CTC) é um importante indicativo da qualidade do solo, reflete a capacidade do solo em reter cátions essenciais às plantas como o K, Na, Ca e Mg. Os valores de CTC observados neste estudo foram interpretados como altos para a mata, que também diferiu estatisticamente das demais e médios para as áreas agrícolas. Estes dados estão de acordo com a literatura que mostra valores considerados médios de CTC para a região agreste do estado.

Os níveis de P foram considerados médio e não diferiram entre as áreas analisadas. Diferindo da literatura que mostra predomínio de níveis baixos de P em todo o estado e contribuem para restrição no desenvolvimento das culturas.

Já para K, foi observado maior variação entre as áreas avaliadas. A área da mata apresentou maior teor e diferiu estatisticamente das demais, seguido da área das linhas da macieira e com menores valores para a área do tomate e entre linhas das macieiras. Em relação a sua interpretação, as áreas de mata e linha das macieiras apresentaram valores altos e as áreas de tomateiros e entrelinhas das macieiras com valores médios. Para Sergipe, valores baixos de K são encontrados com mais frequência apenas na região leste, já para as outras regiões ocorre predomínio de teores de médios e altos deste elemento.

O teor de matéria orgânica foi maior na área da mata em relação à demais, contribuindo para o menor valor de densidade nesta área (Tabela 1). Porém, todos os valores de matéria orgânica foram considerados baixos nas áreas estudadas, indicando restrição quanto a disponibilidade de N para as culturas.

Em relação às áreas analisadas foi observado que a mata não diferiu estatisticamente para os valores de pH, Al, P, PST e V% porém diferiu, apresentado maiores valores para CE, Matéria Orgânica, K, Ca+Mg, CTC e H+ Al+. A interpretação da fertilidade destas áreas mostrou que apenas os teores de matéria orgânica foram considerados baixos, indicando boa fertilidade destes solos, como também observado em áreas produtoras de milho neste mesmo município (SILVA et al., 2015b).

Estudo de solos do Agreste Sergipano também mostraram baixos teores de fósforo e nitrogênio nos solos (matéria orgânica), recomendando maiores adubações com estes elementos (PORTELA et al., 2014).

Podemos observar que as propriedades químicas estudadas apresentam bons indicadores de qualidade (Tabela 3), quando comparado com os valores de referência adotados (SOBRAL et al. 2007), com exceção aos teores de matéria orgânica que necessitam ser aumentados.

Tabela 2: Atributos químicos de qualidade do solo avaliados em sistema agroecológico de produção no município de Simão Dias-Sergipe.

Áreas	рН	CE	PST	Ca+Mg	стс	Р	K	МО	V
avaliadas	H ² O		cmolc	dm-3		mg c	lm-3	g kg ⁻¹	%
Mata nativa	5,9 a	5,7 a	6,86 a	14,9 a	20,0 a	9,77 a	177 a	10,99 a	83,47 a
Tomateiros	6,9 a	1,4 b	6,30 a	8,4 b	11,0 b	8,5 a	40,3 c	4,44 a	83,42 a
Linhas de macieiras	7,6 a	0,9 b	6,97 a	8,3 b	10,7 b	13,42 a	140 b	4,37 a	87,80 a
Entrelinhas de macieiras	6,8 a	0,7 b	6,85 a	7,2 b	9,7 b	9,42 a	52 c	4,83 a	82,29 a

Médias seguidas de mesmas letras não diferem entre si pelo Teste de Scott-Knott (1974) a 5% de probabilidade. Análise dos atributos químicos do solo, pH, hidrogênio (H+), acidez potencial hidrogênio mais alumínio (H+AI), fósforo (P), potássio (K), cálcio mais magnésio (Ca+Mg²), CE (condutividade elétrica), matéria orgânica (MO), percentagem de sódio trocável (PST), capacidade de troca catiônica (CTC) e saturação por bases (V%) para as camadas 0 – 20 cm.

Tabela 3: Níveis de fertilidade do solo avaliados em sistema agroecológico de produção no município de Simão Dias-Sergipe.

Níveis de Fertilidade									
Áreas avaliadas	рН	CE	PST	Ca+Mg	СТС	Р	К	MO	V
Mata nativa	MÉDIO	MÉDIO	BAIXO	ALTO	ALTO	MÉDIO	ALTO	BAIXO	ALTO
Tomateiros	ALTO	BAIXO	BAIXO	ALTO	MÉDIO	MÉDIO	MÉDIO	BAIXO	ALTO
Linhas de macieiras	ALTO	BAIXO	BAIXO	ALTO	MÉDIO	MÉDIO	ALTO	BAIXO	ALTO
Entrelinhas de macieiras	ALTO	BAIXO	BAIXO	ALTO	MÉDIO	MÉDIO	MÉDIO	BAIXO	ALTO

Atributos microbiológicas

Os dados de carbono da biomassa microbiana (Tabela 4) mostraram que não houve diferença significativa entre as áreas analisadas.

No momento da coleta das amostras, a região se encontrava em período seco, há no mínimo 5 meses. A área de plantio de tomateiros estava limpa com mudas recém transplantadas, irrigada por gotejamento e logo receberia cobertura morta. As áreas com macieiras também recebiam irrigação por gotejamento e em suas entrelinhas eram cultivadas com diferentes olerícolas.

Estes resultados mostraram que mesmo com menor teor de umidade, a área da mata não diferiu das demais em relação a quantidade de microrganismos.

Estudos já mostraram que temperatura, umidade, fluxo de calor no solo e luminosidade configuram condições essenciais para o entendimento e distribuição destes seres vivos nos diversos ecossistemas naturais, inclusive a microfauna (CHAPIN et al., 2002; TORTORA et al., 2004). Também estudos realizados em Caxiuanã — Pará, mostraram a influência de fatores ambientais, tais como a temperatura e o pH do solo na população microbiana e na fauna do solo (RUIVO et al., 2002; RUIVO et al., 2007). Para este momento de coleta, não foi observado influência do manejo do solo na quantidade da população microbiana, porém este estudo poderia ser repetido em outra época do ano para confirmar estes resultados.

Em relação a respiração da biomassa microbiana e o quociente metabólico, foi observado (Tabela 4) que as áreas com plantio de tomateiros e olerícolas nas entrelinhas das macieiras, foram superiores estatisticamente em relação as demais. Altos valores do qCO₂ significam que a população microbiana está oxidando carbono das suas próprias células para sua manutenção, indicando que se encontra em condições adversas ou que o local recebeu incorporação de resíduos orgânicos (CAPUANI et al., 2012).

As áreas aqui estudadas que apresentaram maior respiração e quociente metabólicos receberam adubação orgânica na forma de composto e foi revolvida para o plantio das olerícolas. Este maior aporte de adubos orgânicos e o revolvimento estimula a atividade microbiana, podendo levar a morte da população caso não tenha nutrientes suficientes no solo ou degradação da matéria orgânica acumulada no mesmo (SILVA et al., 2012).

Tabela 4: Atributos microbiológicos de qualidade do solo avaliados em sistema agroecológico de

produção no município de Simão Dias-Sergipe.

Áreas avaliadas	Cmic.	RBS	qCO ₂
Mata nativa	270,26 a	72,57 b	0,34 b
Tomateiros	234,67 a	128,50 a	0,66 a
Linhas de macieiras	287,96 a	77,63 b	0,33 b
Entrelinhas de macieiras	226,23 a	143,16 a	0,73 a

Médias seguidas de mesmas letras não diferem entre si pelo Teste de Scott-Knott (1974) a 5% de nível de significância. Cmic: carbono da biomassa microbiana do solo (mg Cmic kg-1 solo); RBS: respiração basaľ do solo (mg C-CO2 kg-1 solo h-1); gCO2 = quociente metabólico (μg Č-CO2 h-1/μg C-biomassa g-1 solo). Média formada por 3 repetições.

6 – CONCLUSÃO

As discussões a cerca da qualidade do solo vêm despertando um crescente interesse, posto que este tem efeitos profundos na saúde e na produtividade de um determinado ambiente e aos fatores relacionados ao mesmo. Sendo assim, os solos quando submetidos a determinados sistemas de cultivo, tendem a um novo estado de instabilidade que se reflete em diferentes manifestações de seus atributos.

Deste modo, foi observado que a presença de cobertura vegetal contribuiu para aumentar o teor de umidade nas áreas cultivadas;

Por conseguinte, o manejo empregado nas áreas agrícolas provocou o aumento da densidade. Porém os valores encontrados não restringiram o desenvolvimento radicular:

Assim, O uso agrícola dos solos reduziu os teores de CE, matéria orgânica, K, Ca+Mg, CTC e H+Al mais não deferiu estatisticamente o pH, Al, P, PST e V%.

No entanto, a fertilidade dos solos analisados é considerada boa, apresentando apenas baixos teores de matéria orgânica;

Logo, não houve alteração no carbono da biomassa microbiana em todas as áreas avaliadas, entretanto as áreas com maior revolvimento apresentaram maior respiração microbiana;

Contudo, as áreas agrícolas necessitam aumentar os teores de matéria orgânica e diminuir o revolvimento para promover melhorias gerais nestes solos.

Portanto, o conceito do que seja um solo com qualidade depende das prioridades previamente estabelecidas, levando em consideração a sua utilidade múltipla para não comprometer futuramente o desempenho de algumas de suas funções. Assim, um determinado tipo de solo pode ser considerado com boa qualidade quando apresentar capacidades importantes que contribuam para a produtividade e a diversidade.

7 - REFERÊNCIAS

ABREU, B. S.; FERNANDES NETO, S.; BARACUHY NETO, G. M.; ARAÚJO, P. S. de; BEZERRA, P. T. da C., BARACUHY, J. G. de V. **Desenvolvimento Regional e Cooperativismo – Estudo de Caso**. In.: Revista Educação Agrícola Superior. ABEAS v.22, n.2, p.13-17, 2007

ALESE - Assembleia Legislativa de Sergipe. Luciano Pimentel lamenta queda na produção de milho em Sergipe. Disponível em: http://www.al.se.gov.br/luciano-pimentel-lamenta-queda-na-producao-de-milho-em-sergipe/print/>. Acesso em: 30 jun. 2017.

ALVES, T. D. S.; CAMPOS, L. L.; ELIAS NETO, N.; MATSUOKA, M.; LOUREIRO, M. F. Biomassa e atividade microbiana de solo sob vegetação nativa e diferentes sistemas de manejos. Acta Scientiarum. Agronomy, Maringá, v. 33, n. 2, p. 341- 347, 2011.

ARAÚJO, E. A.; KER, J. C.; NEVES, J. C. L.; LANI, J. L. **Qualidade do solo: conceitos, indicadores e avaliação**. Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, Guarapuava-PR, v.5, n.1, p.187-206, 2012.

ARAÚJO, A. S. F.; MONTEIRO, R. T. R. Indicadores biológicos de qualidade do solo. Bioscience Journal, v. 23, p. 66-75, 2007a.

ARAÚJO, R.; GOEDERT, W.J.; LACERDA, M.P.C. **Qualidade de um solo sob diferentes usos e sob cerrado nativo**. Revista Brasileira de Ciência do Solo, 31: 099-1108, 2007b.

ARSHAD, M. A.; LOWER, B.; GROSSMAN, B. **Physical tests for monitoring soil quality**. In: DORAN, J. W.; JONES, A. J.(Eds.). Methods for assessing soil quality. Soil Science Society of America, p.123-141, (Special publication, 49), 1996.

ASSIS, R. L. de; ROMEIRO, A. R. **Agroecologia e Agricultura Orgânica: controvérsias e tendências**. Desenvolvimento e Meio Ambiente, Curitiba, v. 6, p. 67-80, 2002.

BARRETO, A.C.; FREIRE, M.B.G.; NACIF, P.G.S.; ARAÚJO, Q.R.; FREIRE, F.J.; INÁCIO, E.S.B. Fracionamento químico do carbono orgânico total em um solo de mata submetido a diferentes usos. Revista Brasileira de Ciência do Solo, 32, p: 1471-1478, 2008.

BERNARDO, S.; SOARES, A. A.; MANTOVANI, E. C. **Manual de Irrigação**.8. ed. Viçosa. UFV. 2006. 625p.

CAMARGO, F. F. Indicadores físicos, químicos e biológicos da qualidade do solo em sistemas agroflorestais agroecológicos na área de preservação ambiental Serra da Mantiqueira, 241 p. Tese (doutorado) MG / Flora Ferreira Camargo. – Lavras: UFLA, 2016.

- CAPUANI, S.; RIGON, J. P.G.; BELTRÃO, N.E. de M.; NETO, J.F.de B. **Atividade microbiana em solos, influenciada por resíduos de algodão e torta de mamona**. Revista Brasileira de Engenharia Agrícola e Ambiental v.16, n.12, p.1269–1274, 2012. Campina Grande, PB, UAEA/UFCG. Disponível em http://www.agriambi.com.br
- CHAPIN, F. S.; MATSON, P. A.; MOONEY, H. A. **Principles of terrestrial Ecosystem ecology**. Nova York: Springer, 2002, 455 p.
- CAVALCANTE, R. B. L. Planejamento de povoamentos de eucalipto com condicionantes hidrológicos: um estudo de caso em Eldorado do Sul/RS. 2011. 102 f. Dissertação (Mestrado em Recursos Hídricos e Saneamento Ambiental) Universidade Federal do Rio Grande do Sul, Porto Alegre-RS.
- CUNHA, E.Q.; STONE, L.F.; FERREIRA, E.P.B.; DIDONET, A.D. & MOREIRA, J.A.A. Atributos físicos, químicos e biológicos de solo sob produção orgânica impactados por sistemas de cultivo. Revista Brasileira Engenharia Agrícola. Ambiental 16:56-63, 2012.
- DE-POLLI, HELVÉCIO; PIMENTEL, MÁRCIO SAMPAIO. Indicadores de qualidade do solo. In: AQUINO, ADRIANA MARIA; ASSIS, RENATO LINHARES (eds.) Processos biológicos no sistema solo planta: ferramentas para uma agricultura sustentável. Brasília DF: Embrapa, 2005.
- EMBRAPA SOLOS 1973. **Mapa Exploratório Reconhecimento de solos do município de Simão Dias, SE**. disponível em:http://www.uep.cnps.embrapa.br/solos/se/simaodias.pdf>. Acesso em 20 de ago. 2017.
- EMBRAPA. Centro Nacional de Pesquisa de Solos. **Manual de métodos de análise de solos**. 2. ed. rev. atual. Rio de Janeiro, 1997. p. 212.
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA EMBRAPA. **Recomendações para a o uso de corretivos e fertilizantes no estado de Sergipe.** Brasília, 22 cm. 251 p. ISBN 9788585809270.
- EPELDE, L.; BURGES, A.; MIJANGOS, I.; GARBISU, C. Microbial properties and attributes of ecological relevance for soil quality monitoring during a chemical stabilization field study. Applied Soil Ecology, v. 75, p. 1-12, 2014.
- FANCELLI, A. L.; DOURADO NETO. D. **Produção de milho**. 2ª ed. Piracicaba: Livro Ceres. p.21-54. 2004.
- FERREIRA, D.F. **Sistema de análises de variância para dados balanceados**. Lavras: UFLA, 2000. (SISVAR 4. 1. pacote computacional).
- FERREIRA, E. P. B. et al. **Microbial soil quality indicators under different crop rotations and tillage management**. Revista Ciência Agronômica, v. 41, n. 2, p. 177-183. 2010.

- FERREIRA, E. P. B.; WENDLAND, A.; DIDONET, A. D. **Microbial biomass and enzyme activity of a Cerrado Oxisol under agroecological production system**. Bragantia, v. 70, n. 4, p. 1-9, 2011.
- FREITAS, L. de; CASAGRANDE, J. C.; OLIVEIRA, I. A. de.; MORETI, T. C. C. F.; CARMO, D. A. B.do. **Avaliacao de Atributos Quimicos e Fisicos de Solos com Diferentes Texturas Cultivados com Cana-de-Acuçar**. Enciclopédia Biosfera, Goiania, v. 9, n. 17, p.362-374, 2013.
- FRIGHETTO, R.T.S. Análise da biomassa microbiana em carbono: método de fumigação extração. In: FRIGHETTO, R.T.S.; VALARINI, P.J. (Coords.). Indicadores biológicos e bioquímicos da qualidade do solo: manual técnico. Jaguariúna: Embrapa Meio Ambiente, 2000. 198 p. (EMBRAPA Meio Ambiente Documento, 21).
- GOMES, A. S. Qualidade do solo: conceito, importância e indicadores da qualidade. Revista Cultivar Hortaliças e Frutas, Grupo Cultivar Artigos Técnicos, 2010.
- IBGE. Instituto Brasileiro de Geografia e Estatística. **Sergipe » Simão Dias**. Disponível. em:< https://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=280710&search=||infogr%E1ficos:-informa%E7%F5es-completas>. Acesso em: 09 set. 2017.
- IBGE. Instituto Brasileiro de Geografia e Estatística. **Sergipe » Simão Dias » Produção Agrícola Municipal Lavoura Temporária 2015**. Disponível. em: < https://cidades.ibge.gov.br/xtras/temas.php?lang=&codmun=280710&idtema=158&s earch=sergipe|simao-dias|producao-agricola-municipal-lavoura-temporaria-2015>. Acesso em: 30 set. 2017.
- INGARAMO, O. E. Indicadores físicos de la degradación del suelo. 2003. 298 p. Tese (Doutorado em Edafologia) Universidade da Coruña, La Coruña, 2003.
- ISLAM, K. R.; WEIL, R. R. Soil quality indicator properties in mid-atlantic soils as influenced by conservation management. Journal of Soil and Water Conservation, v. 55, p. 69-78, 2000.
- LAL, R. Physical management of soils of the tropics: priorities for the 21st century. Soil Science, v.165, n.3, p.191-207, 2000.
- LAVELLE, P. et al. **Soil invertebrates and ecosystem services**. European Journal of Soil Biology, France, v. 42, n. 1, p. 3–15, Oct. 2006. Suplemento.
- LOSS, A.; PEREIRA, M.G.; SCHULTZ, N.; ANJOS, L.H.C.; SILVA, E.M.R. Atributos químicos e físicos de um Argissolo Vermelho-Amarelo em sistema integrado de produção agroecológica. Pesquisa Agropecuária Brasileira, v.44, n.1, p.68-75, 2009.

- MILINDRO, I. F.; RODRIGUES, R. A.; SANTOS, M. K. A.; SANTOS, V. B. **Atributos químicos como indicadores de qualidade do solo sob manejo agroecológico**. Cadernos de Agroecologia, Belém, v. 10, n. 3, p. 1-5, out. 2016.
- MOREIRA, F. M. S.; SIQUEIRA, J. O. **Microbiologia e bioquímica do solo**. Lavras: UFLA, 2006.
- MOREIRA, W. H.; BETIOLI JÚNIOR, E.; PETEAN, L. P.; TORMENA, C. A.; ALVES, S. J.; COSTA, M. A. T. & FRANCO, H. H. S. **Atributos físicos de um Latossolo Vermelho distroférrico em sistema de integração lavoura-pecuária**. Revista Brasileira de Ciência do Solo, Viçosa, v.36, n.2, p.389-400, mar/abr. 2012.
- NOSETTO, M. D.; JOBBÁGY, E. G.; PARUELO, J. M. Land-use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina. Global Change Biology. v. 11, n. 7, p. 1101 1117, 2005.
- PEZARICO, C. R.; VITORINO, A. C. T.; MERCANTE, F. M.; DANIEL, **O Indicadores de qualidade do solo em sistemas agroflorestais**. Revista de Ciência Agrarária, v. 56, n. 1, p. 40-47, jan./mar. 2013.
- PIMENTEL, M. S.; AQUINO, A. M.; CORREIA, M. E. F.; COSTA, J. R.; RICCI, M. S.F.; DE-POLLI, H. Atributos biológicos do solo sob manejo orgânico de cafeeiro, pastagem e floresta em região do médio do Paraíba fluminense-RJ. Coffee Science, Lavras, v. 1, n. 2, p. 85-93, 2006.
- PINTO, C. R. O. **Efeito do uso do solo sobre seus atributos na microrregião de Chapadinha-MA**. 2014. 85 p. Tese (Doutorado em Ciência do Solo) Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 2014.
- PORTELA, J. C.; CINTRA, F. L. D.; CARVALHO, H. L.; ANJOS, J. L. & MELO, P. O. Atributos físico hídricos e químicos de solos sob cultivo de milho na região agreste de Sergipe. Agropecuária Científica no Semiárido, 10:51 -58, 2014.
- PRATA, D. A. T. **Determinantes da Expansão da Produção de Milho em Sergipe**. 2013. Dissertação de Mestrado Profissional Em Desenvolvimento Regional e Gestão de Empreendimentos Locais Universidade Federal de Sergipe. 2013.
- RAMOS, F. T.; RAMOS, D. T.; AZEVEDO, E. C.; MAIA, J. C. S; ROQUE, M. W. **Modificações físicas em um Latossolo Vermelho-Amarelo distrófico no cerrado sob diferentes sistemas de manejo**. Global Science and Technology, v. 6, p. 12-25, 2013.
- REINERT, D. J.; DIAS, L. E. Recuperação de solos em sistemas agropastoris. Recuperação de áreas degradadas. Viçosa: UFV, SOBRADE, p. 163-176, 1998.
- REINERT, D.J; REICHERT, J.M. **Propriedades físicas do solo. Universidade Federal de Santa Maria. Centro de ciências rurais**. Santa Maria- RS, 2006.
- RESENDE, F.V; SOUZA, L. S.; OLIVEIRA, P. S. R.; GUALBERTO, R. Uso de cobertura morta no controle da umidade e temperatura do solo, na incidência de

- plantas invasoras e na produção da cenoura em cultivo de verão. Ciência e Agrotecnologia, Lavras MG, v. 29, n.1, p. 100-105, 2005.
- REYNOLDS, W.D.; BOWMAN, B. T.; C. F. DRURY; C. S. TAN; LU X. Indicators of good soil physical quality: density and storage parameters. Geoderma, Amsterdam, v.110, n.1-2, p.131-146, 2002.
- ROCHA, Jefferson Marçal da; SIMAN, Renildes Fortunato. **Agroecologia: um contraponto à produtividade insustentável da agricultura convencional**. Rev. Bras. Agroecologia, v. 2, n. 1, p. 29-32, 2007.
- ROSA, D. B.; NETO, M.R.H.; CASTILHOS, D.D.; PAULETTO, E. A.; H, L.; CASTILHOS, R. M.V. Biomassa microbiana e respiração basal de um solo construído e submetido a diferentes cultivos na área de mineração de carvão de Candiota/RS. III Congresso Brasileiro de Carvão Mineral, Gramado/ RS, 2011. Disponível em: www.ufrgs.br/redecarvao/Sessões_A7_A8_A9/A7_ARTIGO_01.pdf
- RUIVO, M.L.P.; PEREIRA, S.B.; BUSSETI, E.P.C.; COSTA, R.F.; QUANZ, B.; NAGAISHI, T.Y.; OLIVEIRA, P.J.; MEIR, P.; MALHI, Y. **Propriedades do solo e fluxo de CO2 em Caxiuanã, Pará: experimento LBA- Esecaflor**. In: KLEIN, E.L.; VASQUEZ, M.L.; ROSA-COSTA, M.L. (Orgs.) Contribuições à Geologia da Amazônia, V.3. SBG-Núcleo Norte, p. 291-299, 2002.
- Ruivo MLP, Barreiros JAP, Silva RM, Sá LDA; Lopes ELN. **LBA-ESECAFLOR Artificially Induced Drought in Caxiuanã Reserve, Eastern Amazonia: Soil Properties and Litter Spider Fauna**. Earth Interactions 2007; 11(8):1-13. http://dx.doi.org/10.1175/EI168.1
- SANTANA, D.P. & BAHIA FILHO, A.C. **Qualidade do solo: Uma visão holística**. B. Inf. SBCS, 27:15-18, 2002.
- SANTOS, C. **Níveis tecnológicos dos Agroecossistemas do Milho no Estado de Sergipe**. 2012. Dissertação (Mestrado em Desenvolvimento e Meio Ambiente) Universidade Federal de Sergipe, 2012.
- SAVIOZZI, A.; BUFALINO, P.; LEVI-MINZI, R.; RIFFALD, R. **Biochemical activities** in a degraded soil restored by two amendments: a laboratory study. **Biology & Fertility of Soils**, Berlin, v. 35, p. 96-101, 2002.
- SILVA, R.F. et al. Macrofauna invertebrada do solo sob diferentes sistemas de produção em Latossolo da Região do Cerrado. Pesquisa Agropecuária Brasileira, Brasília, v.41, p.697- 704, 2006.
- SILVA, E. E.; AZEVEDO, P.H. S. de; DE-POLLI, H. **Determinação de carbono da biomassa microbiana do solo (BMS-C) Embrapa Agrobiologia** Comunicado Técnico, 98, Ago. 2007a. 6 p.
- SILVA, E. E. da; AZEVEDO, P.H. S. de; DE-POLLI, H. **Determinação da respiração basal (RBS) e quociente metabólico do solo (qCO2).** Embrapa Agrobiologia Comunicado técnico, 99, Ago. 2007b. 6 p.

- SILVA, R.R.; SILVA, M.L.N.; CARDOSO, E.L.; MOREIRA, F.M.S.; CURI, N. & ALOVISI, A.M.T. Biomassa e atividade microbiana em solo sob diferentes sistemas de manejo na região fisiográfica Campos das Vertentes MG. Revista Brasileira de Ciência do Solo, 34:1585-1592, 2010.
- SILVA, M. S. C.; SILVA, E. M.R.; PEREIRA, M.G.; SILVA, C.F. **Estoque de Serapilheira e Atividade Microbiana em Solo sob Sistemas Agroflorestais**. Floresta e Ambiente; vol. 19 (4), p. 431-441, 2012.
- SILVA, D. A. A.; SILVA, D. M.; JACQUES, R. J. S.; ANTONIOLLI, Z. I. **Bioindicadores de qualidade edáfica em diferentes usos do solo**. Enciclopédia Biosfera 11, 3728-3736, 2015a.
- SILVA, J. N.; LINHARES, P. C. A.; FIGUEREDO, J. P.; IRINEU, T. H. S.; SILVA, J. N.; ANDRADE, R. **Crescimento do milho bandeirante sob lâminas de irrigação e mulching**. Agropecuária Científica no Semiárido, v. 11, n. 4, p. 87-96, 2015b.
- SOBRAL, L. F.; VIEGAS, P. R. A.; SIQUEIRA, O. J. W.; ANJOS, J. L., BARRETTO, M. C. V. & GOMES, J. B. V. Recomendação para uso de corretivos e fertilizantes no Estado de Sergipe. Embrapa Tabuleiros Costeiros, 2007. 251p.
- TORTORA, G. J.; FUNKE, B. R.; CASE, C. L. **Microbiology: an introduction**. E. Pearson, 8 ed., 2004.