

CORRELAÇÃO ENTRE RESISTÊNCIA MECÂNICA E A VELOCIDADE ULTRASSONORA DOS BLOCOS CERÂMICOS ESTRUTURAIS PRODUZIDOS DO MUNICÍPIO DE ITABAIANINHA/SE.

<u>Pedro Alexandre Guimarães Rocha</u> ⁽¹⁾; Adriana Virginia Santana Melo ⁽²⁾; Maiara Lisboa Batista ⁽³⁾; Isis Nayra Rolemberg Prudente ⁽⁴⁾; Wilson Ramos Aragão Júnior ⁽⁵⁾; Ítalo Rocha Almeida ⁽⁶⁾

(1) Estudante; Instituto Federal de Sergipe; pedroalexrander@hotmail.com (2) Professora; Instituto Federal de Sergipe; adriana.melo@ifs.edu.com (3) Estudante; Instituto Federal de Sergipe; mailto:mail

Resumo – A confecção de materiais de construção que não atendem ao desempenho esperado gera impactos negativos e assume aspectos de desperdício e geração de resíduos. Nesse particular os blocos cerâmicos destinados à construção civil, produzidos pelo setor cerâmico brasileiro, ainda carecem de indicadores regulares de desempenho. O objetivo dessa pesquisa é estabelecer parâmetros de correlação entre os ensaios de resistência mecânica à compressão do bloco cerâmico estrutural com a velocidade ultrassonora decorrente de ensaio não destrutivo por aparelho de ultrassom. Outro efeito desse trabalho poderá ser a redução do resíduo gerado pelos laboratórios de materiais de construção ao longo da constatação da confiabilidade da extrapolação das curvas de referência decorrentes da pesquisa.

Palavras-Chave: blocos cerâmicos estruturais, velocidade de ultrassom, curvas de referência, ensaio não destrutivo.

INTRODUÇÃO

A necessidade de adoção de práticas sustentáveis para análise da resistência de produtos cerâmicos desencadeou o interesse pela correlação entre essa propriedade física nos blocos estruturais e as características ultrassônicas correspondentes. Para tanto, fizemos uso do PunditLab, que nos promove a verificação da resistência das cerâmicas a partir de ensaios não destrutivos.

O aparelho PunditLab Plus mede a velocidade ultrassônica pela emissão de ondas por transdutores. Além da velocidade, esse equipamento nos informa o quão estável essa onda se apresenta no trecho onde ocorre a análise. Porém, o PunditLab oferece limitações para produtos cerâmicos, já que a curva base – SONREB - para a determinação da velocidade corresponde ao concreto, necessitando antes mesmo do inicio das atividades a determinação de uma curva que correlacione a velocidade do ultrassom e a resistência dos blocos cerâmicos, forçando o reconhecimento da cerâmica e uma maior precisão quando deseja-se obter a velocidade.

As principais características requeridas de blocos cerâmicos estruturais são: uniformidade, homogeneidade, resistência à abrasão e a compressão (BAUER). Essas características advêm de seus processos de produção, desde etapas dentro das empresas - seleção das componentes argilosas,

moldagem dos produtos, surgimento de reações de vitrificação do material ainda argiloso, quando esse é calcinado - até etapas externas a manipulações laboratoriais, no transporte e armazenagem desses produtos nos canteiros de obra. Para análise da resistência o ensaio correlaciona a quantidade de vazios presente na cerâmica e a velocidade do ultrassom, portanto quanto menor a quantidade de poros e/ou fissuras, maior será a velocidade ultrassônica nesse material, pois o som se propaga em maior velocidade em sólidos.

A cidade de Itabaianinha, em Sergipe, é responsável por considerável parte da produção de cerâmicas no estado, sendo beneficiada pelas maiores empresas nesse ramo. Com isso, fez – se necessário a seleção de empresas que fabricassem blocos estruturais que atendessem a NBR15720 – 2 (ABNT), para que os parâmetros formados na determinação dessa curva inicial possam trazer exatidão e confiabilidade.

As argilas possuem características peculiares quando na presença de água ou na ausência da mesma. Há uma facilidade em encontrar diferentes tipos de argila e devido a essas variações em seus componentes químicos, dentro de uma mesma jazida, o estudo de seus componentes torna-se indispensável para a predição do comportamento final apresentado pelo produto cerâmico.

Esse estudo, dessa maneira, relata a primeira fase de determinação dessa curva resistência mecânica (fck) especificada pelo ensaio presente na NBR 15720 – 2 e a velocidade ultrassonora. Onde, ao final, obteve-se a curva fck x V necessária para o inicio das atividades.

MATERIAL E MÉTODOS

A primeira etapa foi demarcada pela reunião de todo material que retratasse velocidade ultrassônica em materiais cerâmicos. A carência na literatura, de trabalhos e normatizações, sobre esse material fez com que grande parte dos trabalhos base tivesse o concreto referência. A própria curva SONREB para o cálculo da velocidade ultrassom do PunditLab Plus é feita para concreto.

Com necessidade de adaptação dos dados do aparelho PunditLab Plus para produtos cerâmicos, fez-se necessário a utilização de outro equipamento de avaliação não destrutiva, o Silver Schimdt, o qual opera com o cálculo do rebote, que expressa a resposta do material ao impacto.

O estudo para a determinação da curva foi dividido em três etapas principais, a primeira delas foi demarcada pela revisão bibliográfica sobre a relação velocidade ultrassônica e blocos cerâmicos, assim como, sobre os princípios de funcionamento dos equipamentos utilizados.

A segunda etapa iniciou-se com a seleção das empresas de cerâmica na cidade de Itabaianinha — Sergipe, que possuam blocos cerâmicos do tipo estruturais. Essa etapa também foi demarcada por caracterização da produção, quanto à pressão de extrusão utilizada, temperatura de queima, componentes da argila, entre outras características da microestrutura da cerâmica que podem interferir na velocidade ultrassônica. Por fim houve a determinação da curva SONREB para análise da velocidade ultrassônica e estabilidade da onda, quando essa percorre cerâmicas. Veja o fluxograma a seguir.

Levantamento Bibliográfico

Seleção das empresas ceramistas

Caracterização da produção

Determinação da curva SONREB

Tratamentos e amostragens

Para realização da pesquisa foi utilizado uma amostra de 1000 blocos cerâmicos cedidos pela Cerâmica São José, porém para determinação da curva de SONREB, foram utilizados apenas 60 blocos, sendo que destes, os 40 primeiros blocos foram descartados, pois estes foram saturados antes do ensaio e ,durante a primeira tentativa de obtenção da curva concluímos que não é possível obter a velocidade ultrassônica com a cerâmica saturada.

Para obtenção de uma maior faixa de confiabilidade nos dados gerados pelo PundtLab é necessário que os blocos estejam em temperatura ambiente e o gel utilizado na interface do transdutor e o bloco deve ser resfriado previamente.

RESULTADOS E DISCUSSÃO

Devido ao desenvolvimento tecnológico os equipamentos de ensaio não destrutivos, vem sendo utilizados na avaliação de qualidade de estruturas de maneira progressiva (OLIVEIRA, 2011). O método de análise de ultrassonografia, de acordo com a NBR 8802 (ABNT), determina a velocidade de propagação de ondas longitudinais sob o concreto.

A velocidade com que essa onda percorre a cerâmica é influenciada pelas propriedades desse material. A densidade é uma dessas características e é função da quantidade de fissuras que a cerâmica apresenta. Oliveira (2011) afirma que a aplicação do pulso ultrassônico em blocos de concreto permite avaliá-lo tanto em relação a sua homogeneidade quanto na detecção e extensão aproximada de fissuras.

De acordo com NAIK ET. AL. (2004), as ondas produzidas por transdutores eletroacústicos acoplados à superfície do concreto, podem estar dispostas em três maneiras: transmissão direta, indireta e semidireta. A escolha do tipo de transmissão depende da direção em que se deseja analisar o material, em suma, nesse estudo a transmissão que oferece maior precisão é a direta.

A análise da velocidade ultrassônica nos blocos cerâmicos ocorreu na direção vertical paralela aos furos que o material apresenta, veja figura (etwas), como a análise da resistência a compressão é feita nessa mesma direção há, assim, necessidade de análise da homogeneidade e da presença de fissuras.

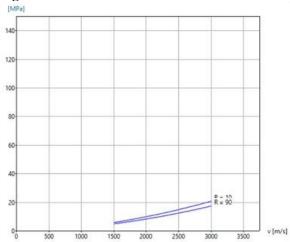
Para a determinação da curva SONREB da cerâmica, o rebote e a velocidade ultrassonora em 10 amostras foi avaliado, para a determinação de constantes a, b e c imprescindíveis na determinação da curva. O aparelho Pundit Lab, além de calcular essa velocidade, apresenta a força de compressão do material em relação á curva SONREB do concreto, essas informações foram necessárias para o preenchimento da tabela 1.

Tabela 1. Relação entre velocidade ultrassônica, valor de rebote e resistência da cerâmica.

Força de compressão fck (MPa or PSI)		Valor de rebote do Silver/Original Schmidt (S)
15	2213	2,1
8,5	2186	7,8
16,5	2505	5,1
11	2139	4,5
16	2397	3,1
15,5	2159	0,5
13,5	2334	0,6
14	2147	4,8
17	2403	5,3
17	2385	1,3
14,5	2163	2,8
13	2197	1,5
14,5	2390	4,4
11,5	2100	2
13	2188	4
14	2496	3,1

Tendo como resultado as seguintes constantes:

Tabela 2. Tabelas das constantes obtidas no Excel


Constante a	1,03959E-05
Constante b	1,834804104
Constante c	-0,081212357
Valor R- quadrado	0,43157077

Por aproximação linear, podemos encontrar um gráfico fck- velocidade ultrassonora, que mais se aproxime dos resultados encontrados nos pontos. As curvas podem ser do tipo polinomial ou exponencial. A formulação dessa curva deve levar em consideração outras variáveis e envolve,

consequentemente, outros ensaios como o de geometria e o de absorção.

Veja a seguir a curva SONREB obtida pela análise das 10 amostras de blocos cerâmicos estruturais:

Figura 2. Curva de SONREB

CONCLUSÕES

A partir da curva de correlação entre resistência e velocidade de propagação do som no bloco cerâmico (curva SONREB), se espera estabelecer indicadores que possibilitem a continuidade da pesquisa e desenvolver uma relação entre os dados fornecidos pelo PunditLab e a resistência encontrada utilizando a prensa, permitindo, deste modo, utilizar essa metodologia em oposição aos ensaios não-destrutivos.

REFERÊNCIAS

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR nº 15.270-1: Componentes cerâmicos Parte 1: Blocos cerâmicos para alvenaria de vedação Terminologia e requisitos. Rio de Janeiro, 2005, 11 p.
- _____. NBR n° 15.270-2: Componentes cerâmicos Parte 2: Blocos cerâmicos para alvenaria estrutural Terminologia e requisitos. Rio de Janeiro, 2004, 11 p.
- NBR nº 15.270-3: Componentes cerâmicos Parte 3:
 Blocos cerâmicos para alvenaria estrutural e de vedação
 Métodos de ensaio. Rio de Janeiro, 2004, 27 p.
- BUSTAMANTE, G. M.; BRESSIANI, J. C. A indústria cerâmica brasileira. Cerâmica Industrial, 5 (3) Maio/Junho, 2000. Disponível em http://www.ceramicaindustrial.org.br/pdf/v05n03/v5n3_5.pd f
- ETENE/BNB. Relatório de Pesquisa sobre a Indústria de Cerâmica Vermelha no Nordeste. Fortaleza. out 2010. Disponível em http://www.banconordeste.gov.br/content/aplicacao/etene/et ene/docs/ano4_n21_informe_setorial_ceramica_vermelha.p
- Instituto Nacional de Metrologia, Qualidade e Tecnologia. Portaria n°658 /Presi, de 17/12/2012. Fl.2. Disponível em: www.inmetro.gov.br
- JUNIOR, S. F. S.; MARQUES, P. V. Ensaios não destrutivos. Belo Horizonte. nov. 2006. Disponível em: http://www.demec.ufmg.br/site/cursos/arquivos/168pdf
- MACÊDO, A. N; COSTA, D. H. P; TRINDADE, S. R. S; SOUZA, J. A.S; CARNEIRO, Mendes R. J. F. Comportamento de blocos cerâmicos estruturais produzidos a partir da mistura de lama vermelha e argila. Revista Ambiente Construído, Porto Alegre, v. 11, n. 4, p. 25-36, out./dez. 2011. ISSN 1678-86